BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 9744097)

  • 21.
    Kanaoka MM; Shimizu KK; Xie B; Urban S; Freeman M; Hong Z; Okada K
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development.
    Cankar K; Kortstee A; Toonen MA; Wolters-Arts M; Houbein R; Mariani C; Ulvskov P; Jorgensen B; Schols HA; Visser RG; Trindade LM
    Plant Biotechnol J; 2014 May; 12(4):492-502. PubMed ID: 24428422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of pollen apertures in Arabidopsis requires an interplay between male meiosis, development of INP1-decorated plasma membrane domains, and the callose wall.
    Dobritsa AA; Reeder SH
    Plant Signal Behav; 2017 Dec; 12(12):e1393136. PubMed ID: 29173018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequential Deposition and Remodeling of Cell Wall Polymers During Tomato Pollen Development.
    Jaffri SRF; MacAlister CA
    Front Plant Sci; 2021; 12():703713. PubMed ID: 34386029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tetrad pollen formation in Annona (Annonaceae): proexine formation andbinding mechanism.
    Tsou CH; Fu YL
    Am J Bot; 2002 May; 89(5):734-47. PubMed ID: 21665673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. No primexine and plasma membrane undulation is essential for primexine deposition and plasma membrane undulation during microsporogenesis in Arabidopsis.
    Chang HS; Zhang C; Chang YH; Zhu J; Xu XF; Shi ZH; Zhang XL; Xu L; Huang H; Zhang S; Yang ZN
    Plant Physiol; 2012 Jan; 158(1):264-72. PubMed ID: 22100644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice.
    Shi X; Sun X; Zhang Z; Feng D; Zhang Q; Han L; Wu J; Lu T
    Plant Cell Physiol; 2015 Mar; 56(3):497-509. PubMed ID: 25520407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of the permanent tetrad wall in Juncus L. (Juncaceae, Poales).
    Passarini Lopes F; Oriani A; Coan AI
    Protoplasma; 2021 May; 258(3):495-506. PubMed ID: 33159257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microspore development in Annona (Annonaceae): differences between monad and tetrad pollen.
    Lora J; Herrero M; Hormaza JI
    Am J Bot; 2014 Sep; 101(9):1508-18. PubMed ID: 25253711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A cellular mechanism underlying the restoration of thermo/photoperiod-sensitive genic male sterility.
    Shi QS; Lou Y; Shen SY; Wang SH; Zhou L; Wang JJ; Liu XL; Xiong SX; Han Y; Zhou HS; Huang XH; Wang S; Zhu J; Yang ZN
    Mol Plant; 2021 Dec; 14(12):2104-2114. PubMed ID: 34464765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation.
    Rhee SY; Osborne E; Poindexter PD; Somerville CR
    Plant Physiol; 2003 Nov; 133(3):1170-80. PubMed ID: 14551328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic changes in primexine during the tetrad stage of pollen development.
    Wang R; Owen HA; Dobritsa AA
    Plant Physiol; 2021 Dec; 187(4):2393-2404. PubMed ID: 34890458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Delayed callose degradation restores the fertility of multiple P/TGMS lines in Arabidopsis.
    Wang KQ; Yu YH; Jia XL; Zhou SD; Zhang F; Zhao X; Zhai MY; Gong Y; Lu JY; Guo Y; Yang NY; Wang S; Xu XF; Yang ZN
    J Integr Plant Biol; 2022 Mar; 64(3):717-730. PubMed ID: 34958169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in Arabidopsis thaliana.
    Yamaoka Y; Yu Y; Mizoi J; Fujiki Y; Saito K; Nishijima M; Lee Y; Nishida I
    Plant J; 2011 Aug; 67(4):648-61. PubMed ID: 21554450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrastructure of microsporogenesis and microgametogenesis in Brachypodium distachyon.
    Sharma A; Singh MB; Bhalla PL
    Protoplasma; 2015 Nov; 252(6):1575-86. PubMed ID: 25772681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maize csmd1 exhibits pre-meiotic somatic and post-meiotic microspore and somatic defects but sustains anther growth.
    Wang D; Skibbe DS; Walbot V
    Sex Plant Reprod; 2011 Dec; 24(4):297-306. PubMed ID: 21475967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pollen tube invasive growth is promoted by callose.
    Kapoor K; Geitmann A
    Plant Reprod; 2023 Jun; 36(2):157-171. PubMed ID: 36717422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Arabidopsis Exine Formation Defect (EFD) gene is required for primexine patterning and is critical for pollen fertility.
    Hu J; Wang Z; Zhang L; Sun MX
    New Phytol; 2014 Jul; 203(1):140-54. PubMed ID: 24697753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana.
    Hulskamp M; Parekh NS; Grini P; Schneitz K; Zimmermann I; Lolle SJ; Pruitt RE
    Dev Biol; 1997 Jul; 187(1):114-24. PubMed ID: 9224679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PIRL1 and PIRL9, encoding members of a novel plant-specific family of leucine-rich repeat proteins, are essential for differentiation of microspores into pollen.
    Forsthoefel NR; Dao TP; Vernon DM
    Planta; 2010 Oct; 232(5):1101-14. PubMed ID: 20697737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.