BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9744567)

  • 1. The activation of gold complexes by cyanide produced by polymorphonuclear leukocytes. III. The formation of aurocyanide by myeloperoxidase.
    Graham GG; Kettle AJ
    Biochem Pharmacol; 1998 Aug; 56(3):307-12. PubMed ID: 9744567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activation of gold complexes by cyanide produced by polymorphonuclear leukocytes--II. Evidence for the formation and biological activity of aurocyanide.
    Graham GG; Dale MM
    Biochem Pharmacol; 1990 Jun; 39(11):1697-702. PubMed ID: 2160818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The activation of gold complexes by cyanide produced by polymorphonuclear leukocytes--I. The effects of aurocyanide on the oxidative burst of polymorphonuclear leukocytes.
    Rudkowski R; Graham GG; Champion GD; Ziegler JB
    Biochem Pharmacol; 1990 Jun; 39(11):1687-95. PubMed ID: 2160817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is local biotransformation the key to understanding the pharmacological activity of salicylates and gold drugs?
    Whitehouse MW; Graham GG
    Inflamm Res; 1996 Dec; 45(12):579-82. PubMed ID: 8988401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of cyanide on the uptake of gold by red blood cells.
    Graham GG; Haavisto TM; Jones HM; Champion GD
    Biochem Pharmacol; 1984 Apr; 33(8):1257-62. PubMed ID: 6424684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aurocyanide, dicyano-aurate (I), a pharmacologically active metabolite of medicinal gold complexes.
    Graham GG; Whitehouse MW; Bushell GR
    Inflammopharmacology; 2008 Jun; 16(3):126-32. PubMed ID: 18521543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cellular metabolism and effects of gold complexes.
    Graham GG; Champion GD; Ziegler JB
    Met Based Drugs; 1994; 1(5-6):395-404. PubMed ID: 18476258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1H, 13C NMR, and electronic absorption spectroscopic studies of the interaction of cyanide with aurothiomalate.
    Graham GG; Bales JR; Grootveld MC; Sadler PJ
    J Inorg Biochem; 1985 Nov; 25(3):163-73. PubMed ID: 3934340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic study of the reaction between human myeloperoxidase, hydroperoxides and cyanide. Inhibition by chloride and thiocyanate.
    Bolscher BG; Wever R
    Biochim Biophys Acta; 1984 Jul; 788(1):1-10. PubMed ID: 6331509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiocyanate and chloride as competing substrates for myeloperoxidase.
    van Dalen CJ; Whitehouse MW; Winterbourn CC; Kettle AJ
    Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):487-92. PubMed ID: 9359420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrates and products of eosinophil peroxidase.
    van Dalen CJ; Kettle AJ
    Biochem J; 2001 Aug; 358(Pt 1):233-9. PubMed ID: 11485572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride.
    Senthilmohan R; Kettle AJ
    Arch Biochem Biophys; 2006 Jan; 445(2):235-44. PubMed ID: 16125131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide is an antagonist of antiinflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase.
    Kettle AJ; Gedye CA; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):2003-10. PubMed ID: 8390258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation.
    Weiss SJ; Klein R; Slivka A; Wei M
    J Clin Invest; 1982 Sep; 70(3):598-607. PubMed ID: 6286728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide.
    Kettle AJ; Gedye CA; Winterbourn CC
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):503-8. PubMed ID: 9020887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold complexes and activation of human polymorphonuclear leukocytes. Dissociation of changes in membrane potential and oxidative burst.
    Rudkowski R; Ziegler JB; Graham GG; Joulianos G
    Biochem Pharmacol; 1992 Sep; 44(6):1091-8. PubMed ID: 1417933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation.
    Anderson MM; Hazen SL; Hsu FF; Heinecke JW
    J Clin Invest; 1997 Feb; 99(3):424-32. PubMed ID: 9022075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen cyanide and cyanogen chloride formation by the myeloperoxidase-H2O2-Cl- system.
    Zgiczyński JM; Stelmaszyńska T
    Biochim Biophys Acta; 1979 Apr; 567(2):309-14. PubMed ID: 36154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of myeloperoxidase-dependent chlorination of monochlorodimedon.
    Kettle AJ; Winterbourn CC
    Biochim Biophys Acta; 1988 Nov; 957(2):185-91. PubMed ID: 2847800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into thiocyanate oxidation by human myeloperoxidase.
    Schlorke D; Flemmig J; Gau J; Furtmüller PG; Obinger C; Arnhold J
    J Inorg Biochem; 2016 Sep; 162():117-126. PubMed ID: 27343172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.