BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

769 related articles for article (PubMed ID: 9744864)

  • 1. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae.
    O'Rourke SM; Herskowitz I
    Genes Dev; 1998 Sep; 12(18):2874-86. PubMed ID: 9744864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK.
    Posas F; Saito H
    Science; 1997 Jun; 276(5319):1702-5. PubMed ID: 9180081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all members of the MAP kinase cascade.
    Printen JA; Sprague GF
    Genetics; 1994 Nov; 138(3):609-19. PubMed ID: 7851759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of the interaction of Ste50p with Ste11p MAPKKK in Saccharomyces cerevisiae.
    Wu C; Leberer E; Thomas DY; Whiteway M
    Mol Biol Cell; 1999 Jul; 10(7):2425-40. PubMed ID: 10397774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch.
    O'Rourke SM; Herskowitz I
    Mol Cell Biol; 2002 Jul; 22(13):4739-49. PubMed ID: 12052881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of sustained Fus3p kinase activity and the G1 arrest response in cells expressing an inappropriate pheromone receptor.
    Couve A; Hirsch JP
    Mol Cell Biol; 1996 Aug; 16(8):4478-85. PubMed ID: 8754848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways.
    Patterson JC; Goupil LS; Thorner J
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: isolation of a FUS3 mutant that is insensitive to the repression mechanism.
    Hall JP; Cherkasova V; Elion E; Gustin MC; Winter E
    Mol Cell Biol; 1996 Dec; 16(12):6715-23. PubMed ID: 8943326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AKR1 encodes a candidate effector of the G beta gamma complex in the Saccharomyces cerevisiae pheromone response pathway and contributes to control of both cell shape and signal transduction.
    Pryciak PM; Hartwell LH
    Mol Cell Biol; 1996 Jun; 16(6):2614-26. PubMed ID: 8649369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele.
    Westfall PJ; Thorner J
    Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of the yeast pheromone response G protein beta gamma subunits with the MAP kinase scaffold Ste5p.
    Whiteway MS; Wu C; Leeuw T; Clark K; Fourest-Lieuvin A; Thomas DY; Leberer E
    Science; 1995 Sep; 269(5230):1572-5. PubMed ID: 7667635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis.
    O'Rourke SM; Herskowitz I
    Mol Biol Cell; 2004 Feb; 15(2):532-42. PubMed ID: 14595107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ste5 RING-H2 domain: role in Ste4-promoted oligomerization for yeast pheromone signaling.
    Inouye C; Dhillon N; Thorner J
    Science; 1997 Oct; 278(5335):103-6. PubMed ID: 9311911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic relationships between the G protein beta gamma complex, Ste5p, Ste20p and Cdc42p: investigation of effector roles in the yeast pheromone response pathway.
    Akada R; Kallal L; Johnson DI; Kurjan J
    Genetics; 1996 May; 143(1):103-17. PubMed ID: 8722766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the SAM domain of STE50 differentially influence the MAPK-mediated pathways for mating, filamentous growth and osmotolerance in Saccharomyces cerevisiae.
    Jansen G; Bühring F; Hollenberg CP; Ramezani Rad M
    Mol Genet Genomics; 2001 Mar; 265(1):102-17. PubMed ID: 11370856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hsl7p, a negative regulator of Ste20p protein kinase in the Saccharomyces cerevisiae filamentous growth-signaling pathway.
    Fujita A; Tonouchi A; Hiroko T; Inose F; Nagashima T; Satoh R; Tanaka S
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8522-7. PubMed ID: 10411908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ste50p is involved in regulating filamentous growth in the yeast Saccharomyces cerevisiae and associates with Ste11p.
    Ramezani Rad M; Jansen G; Bühring F; Hollenberg CP
    Mol Gen Genet; 1998 Jul; 259(1):29-38. PubMed ID: 9738877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae.
    Takayama T; Yamamoto K; Saito H; Tatebayashi K
    PLoS One; 2019; 14(1):e0211380. PubMed ID: 30682143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pheromone signalling in Saccharomyces cerevisiae requires the small GTP-binding protein Cdc42p and its activator CDC24.
    Zhao ZS; Leung T; Manser E; Lim L
    Mol Cell Biol; 1995 Oct; 15(10):5246-57. PubMed ID: 7565673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway.
    Tatebayashi K; Yamamoto K; Tanaka K; Tomida T; Maruoka T; Kasukawa E; Saito H
    EMBO J; 2006 Jul; 25(13):3033-44. PubMed ID: 16778768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.