BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 9744884)

  • 1. The Xenopus Chk1 protein kinase mediates a caffeine-sensitive pathway of checkpoint control in cell-free extracts.
    Kumagai A; Guo Z; Emami KH; Wang SX; Dunphy WG
    J Cell Biol; 1998 Sep; 142(6):1559-69. PubMed ID: 9744884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts.
    Guo Z; Kumagai A; Wang SX; Dunphy WG
    Genes Dev; 2000 Nov; 14(21):2745-56. PubMed ID: 11069891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 14-3-3 proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts.
    Kumagai A; Yakowec PS; Dunphy WG
    Mol Biol Cell; 1998 Feb; 9(2):345-54. PubMed ID: 9450960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of Xenopus Cds1 in cell-free extracts to DNA templates with double-stranded ends.
    Guo Z; Dunphy WG
    Mol Biol Cell; 2000 May; 11(5):1535-46. PubMed ID: 10793133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1.
    Zeng Y; Forbes KC; Wu Z; Moreno S; Piwnica-Worms H; Enoch T
    Nature; 1998 Oct; 395(6701):507-10. PubMed ID: 9774107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts.
    Kumagai A; Dunphy WG
    Mol Cell; 2000 Oct; 6(4):839-49. PubMed ID: 11090622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25.
    Sanchez Y; Wong C; Thoma RS; Richman R; Wu Z; Piwnica-Worms H; Elledge SJ
    Science; 1997 Sep; 277(5331):1497-501. PubMed ID: 9278511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of Xenopus Chk1 by mutagenesis of threonine-377.
    Wang SX; Dunphy WG
    FEBS Lett; 2000 Dec; 487(2):277-81. PubMed ID: 11150524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of the XChk1 signaling pathway in Xenopus laevis embryos.
    Kappas NC; Savage P; Chen KC; Walls AT; Sible JC
    Mol Biol Cell; 2000 Sep; 11(9):3101-8. PubMed ID: 10982403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positive regulation of Wee1 by Chk1 and 14-3-3 proteins.
    Lee J; Kumagai A; Dunphy WG
    Mol Biol Cell; 2001 Mar; 12(3):551-63. PubMed ID: 11251070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Cdc2/cyclin B activation in Xenopus egg extracts via inhibitory phosphorylation of Cdc25C phosphatase by Ca(2+)/calmodulin-dependent protein [corrected] kinase II.
    Hutchins JR; Dikovskaya D; Clarke PR
    Mol Biol Cell; 2003 Oct; 14(10):4003-14. PubMed ID: 14517314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216.
    Peng CY; Graves PR; Thoma RS; Wu Z; Shaw AS; Piwnica-Worms H
    Science; 1997 Sep; 277(5331):1501-5. PubMed ID: 9278512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts.
    Kumagai A; Dunphy WG
    Science; 1996 Sep; 273(5280):1377-80. PubMed ID: 8703070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress.
    Willis J; Patel Y; Lentz BL; Yan S
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10592-7. PubMed ID: 23754435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds1 and Chk1.
    Furnari B; Blasina A; Boddy MN; McGowan CH; Russell P
    Mol Biol Cell; 1999 Apr; 10(4):833-45. PubMed ID: 10198041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of Chk1 kinase in prophase I arrest of Xenopus oocytes.
    Nakajo N; Oe T; Uto K; Sagata N
    Dev Biol; 1999 Mar; 207(2):432-44. PubMed ID: 10068474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation and activation of the Xenopus Cdc25 phosphatase in the absence of Cdc2 and Cdk2 kinase activity.
    Izumi T; Maller JL
    Mol Biol Cell; 1995 Feb; 6(2):215-26. PubMed ID: 7787247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoplasmic occurrence of the Chk1/Cdc25 pathway and regulation of Chk1 in Xenopus oocytes.
    Oe T; Nakajo N; Katsuragi Y; Okazaki K; Sagata N
    Dev Biol; 2001 Jan; 229(1):250-61. PubMed ID: 11133168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism.
    Uto K; Inoue D; Shimuta K; Nakajo N; Sagata N
    EMBO J; 2004 Aug; 23(16):3386-96. PubMed ID: 15272308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the DNA damage checkpoint using Xenopus egg extracts.
    Willis J; DeStephanis D; Patel Y; Gowda V; Yan S
    J Vis Exp; 2012 Nov; (69):e4449. PubMed ID: 23149695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.