These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9744904)

  • 1. Probability Density Estimation Using Entropy Maximization.
    Miller G; Horn D
    Neural Comput; 1998 Sep; 10(7):1925-1938. PubMed ID: 9744904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum-entropy expectation-maximization algorithm for image reconstruction and sensor field estimation.
    Hong H; Schonfeld D
    IEEE Trans Image Process; 2008 Jun; 17(6):897-907. PubMed ID: 18482885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimax mutual information approach for independent component analysis.
    Erdogmus D; Hild KE; Rao YN; Príncipe JC
    Neural Comput; 2004 Jun; 16(6):1235-52. PubMed ID: 15130248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning mixture models with the regularized latent maximum entropy principle.
    Wang S; Schuurmans D; Peng F; Zhao Y
    IEEE Trans Neural Netw; 2004 Jul; 15(4):903-16. PubMed ID: 15461082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of the principle of maximum entropy: from physics to ecology.
    Banavar JR; Maritan A; Volkov I
    J Phys Condens Matter; 2010 Feb; 22(6):063101. PubMed ID: 21389359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameterization of the Stochastic Model for Evaluating Variable Small Data in the Shannon Entropy Basis.
    Bisikalo O; Kharchenko V; Kovtun V; Krak I; Pavlov S
    Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning Gaussian mixture models with entropy-based criteria.
    Penalver Benavent A; Escolano Ruiz F; Saez JM
    IEEE Trans Neural Netw; 2009 Nov; 20(11):1756-71. PubMed ID: 19770090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Family of probability distributions derived from maximal entropy principle with scale invariant restrictions.
    Sonnino G; Steinbrecher G; Cardinali A; Sonnino A; Tlidi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):014104. PubMed ID: 23410470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum entropy approach to statistical inference for an ocean acoustic waveguide.
    Knobles DP; Sagers JD; Koch RA
    J Acoust Soc Am; 2012 Feb; 131(2):1087-101. PubMed ID: 22352484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional probability density function estimation with sigmoidal neural networks.
    Sarajedini A; Hecht-Nielsen R; Chau PM
    IEEE Trans Neural Netw; 1999; 10(2):231-8. PubMed ID: 18252523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed Bayesian networks: a mixture of Gaussian distributions.
    Chevrolat JP; Rutigliano F; Golmard JL
    Methods Inf Med; 1994 Dec; 33(5):535-42. PubMed ID: 7869953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Duality Between Belief Networks and Feed-Forward Neural Networks.
    Baggenstoss PM
    IEEE Trans Neural Netw Learn Syst; 2019 Jan; 30(1):190-200. PubMed ID: 29994228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcanonical origin of the maximum entropy principle for open systems.
    Lee J; Pressé S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041126. PubMed ID: 23214548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropy-based kernel mixture modeling for topographic map formation.
    Van Hulle MM
    IEEE Trans Neural Netw; 2004 Jul; 15(4):850-8. PubMed ID: 15461078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional entropy maximization for PET image reconstruction using adaptive mesh model.
    Zhu H; Shu H; Zhou J; Dai X; Luo L
    Comput Med Imaging Graph; 2007 Apr; 31(3):166-77. PubMed ID: 17368841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Bayesian evidence scheme for regularizing probability-density estimating neural networks.
    Husmeier D
    Neural Comput; 2000 Nov; 12(11):2685-717. PubMed ID: 11110132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Block Successive Lower-Bound Maximization Algorithm for the Maximum Pseudo-Likelihood Estimation of Fully Visible Boltzmann Machines.
    Nguyen HD; Wood IA
    Neural Comput; 2016 Mar; 28(3):485-92. PubMed ID: 26735743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Likelihood maximization approach to image registration.
    Zhu YM; Cochoff SM
    IEEE Trans Image Process; 2002; 11(12):1417-26. PubMed ID: 18249710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reweighting ensemble probabilities with experimental histogram data constraints using a maximum entropy principle.
    Lou H; Cukier RI
    J Chem Phys; 2018 Dec; 149(23):234106. PubMed ID: 30579321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expectation-Maximization-Based Simultaneous Localization and Mapping for Millimeter-Wave Communication Systems.
    Chen L; Chen Z; Ji Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.