BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9744918)

  • 1. Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses.
    Roberts EB; Meredith MA; Ramoa AS
    J Neurophysiol; 1998 Sep; 80(3):1021-32. PubMed ID: 9744918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret.
    Roberts EB; Ramoa AS
    J Neurophysiol; 1999 May; 81(5):2587-91. PubMed ID: 10322092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of cortical NMDA receptor function prevents development of orientation selectivity in the primary visual cortex.
    Ramoa AS; Mower AF; Liao D; Jafri SI
    J Neurosci; 2001 Jun; 21(12):4299-309. PubMed ID: 11404415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virally mediated knock-down of NR2 subunits ipsilateral to the deprived eye blocks ocular dominance plasticity.
    Cao Z; Liu L; Lickey M; Graves A; Pham T; Gordon B
    Exp Brain Res; 2007 Feb; 177(1):64-77. PubMed ID: 16944113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.
    Liao DS; Krahe TE; Prusky GT; Medina AE; Ramoa AS
    J Neurophysiol; 2004 Oct; 92(4):2113-21. PubMed ID: 15102897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of N-methyl-D-aspartate receptors in ocular dominance plasticity in developing visual cortex: re-evaluation.
    Kasamatsu T; Imamura K; Mataga N; Hartveit E; Heggelund U; Heggelund P
    Neuroscience; 1998 Feb; 82(3):687-700. PubMed ID: 9483528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed postnatal development of NMDA receptor function in medium-sized neurons of the rat striatum.
    Hurst RS; Cepeda C; Shumate LW; Levine MS
    Dev Neurosci; 2001; 23(2):122-34. PubMed ID: 11509835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca(2+) channels.
    Akopian G; Walsh JP
    J Neurophysiol; 2002 Jan; 87(1):157-65. PubMed ID: 11784738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kindling induces transient NMDA receptor-mediated facilitation of high-frequency input in the rat dentate gyrus.
    Behr J; Heinemann U; Mody I
    J Neurophysiol; 2001 May; 85(5):2195-202. PubMed ID: 11353034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal development of NMDA receptor-mediated synaptic transmission in cat visual cortex.
    Iwakiri M; Komatsu Y
    Brain Res Dev Brain Res; 1993 Jul; 74(1):89-97. PubMed ID: 8104742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental changes in NMDA receptor-mediated visual activity in the rat superior colliculus, and the effect of dark rearing.
    Binns KE; Salt TE
    Exp Brain Res; 1998 Jun; 120(3):335-44. PubMed ID: 9628420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of NMDA antagonists on developmental plasticity in kitten visual cortex.
    Rauschecker JP; Egert U; Kossel A
    Int J Dev Neurosci; 1990; 8(4):425-35. PubMed ID: 1979202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silent NMDA receptor-mediated synapses are developmentally regulated in the dorsal horn of the rat spinal cord.
    Baba H; Doubell TP; Moore KA; Woolf CJ
    J Neurophysiol; 2000 Feb; 83(2):955-62. PubMed ID: 10669507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injection of MK-801 affects ocular dominance shifts more than visual activity.
    Daw NW; Gordon B; Fox KD; Flavin HJ; Kirsch JD; Beaver CJ; Ji Q; Reid SN; Czepita D
    J Neurophysiol; 1999 Jan; 81(1):204-15. PubMed ID: 9914281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic pharmacology in the turtle accessory optic system.
    Kogo N; Fan TX; Ariel M
    Exp Brain Res; 2002 Dec; 147(4):464-72. PubMed ID: 12444478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of subunit-specific antisense oligodeoxynucleotides to define developmental changes in the properties of N-methyl-D-aspartate receptors.
    Zhong J; Gribkoff VK; Molinoff PB
    Mol Pharmacol; 1996 Sep; 50(3):631-8. PubMed ID: 8794904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quinoxaline derivatives: structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated currents and synaptic potentials.
    Randle JC; Guet T; Bobichon C; Moreau C; Curutchet P; Lambolez B; de Carvalho LP; Cordi A; Lepagnol JM
    Mol Pharmacol; 1992 Feb; 41(2):337-45. PubMed ID: 1371583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-lasting synaptic modification in the rat hippocampus resulting from NMDA receptor blockade during development.
    Bellinger FP; Wilce PA; Bedi KS; Wilson P
    Synapse; 2002 Feb; 43(2):95-101. PubMed ID: 11754487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal influences induce bidirectional changes in the kinetics of N-methyl-D-aspartate receptor-mediated responses in striate cortex cells during postnatal development.
    Olavarria JF; van Brederode JF; Spain WJ
    Neuroscience; 2007 Sep; 148(3):683-99. PubMed ID: 17706364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA antagonists in the superior colliculus prevent developmental plasticity but not visual transmission or map compression.
    Huang L; Pallas SL
    J Neurophysiol; 2001 Sep; 86(3):1179-94. PubMed ID: 11535668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.