BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 9744921)

  • 1. Passive transfer of Lambert-Eaton myasthenic syndrome induces dihydropyridine sensitivity of ICa in mouse motor nerve terminals.
    Xu YF; Hewett SJ; Atchison WD
    J Neurophysiol; 1998 Sep; 80(3):1056-69. PubMed ID: 9744921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple types of Ca2+ channels in mouse motor nerve terminals.
    Lin MJ; Lin-Shiau SY
    Eur J Neurosci; 1997 Apr; 9(4):817-23. PubMed ID: 9153589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of omega-agatoxin-IVA and omega-conotoxin-MVIIC on perineurial Ca++ and Ca(++)-activated K+ currents of mouse motor nerve terminals.
    Xu YF; Atchison WD
    J Pharmacol Exp Ther; 1996 Dec; 279(3):1229-36. PubMed ID: 8968345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive transfer of Lambert-Eaton syndrome to mice induces dihydropyridine sensitivity of neuromuscular transmission.
    Flink MT; Atchison WD
    J Physiol; 2002 Sep; 543(Pt 2):567-76. PubMed ID: 12205190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of N-, P- and Q-type neuronal calcium channel antagonists on mammalian peripheral neurotransmission.
    Wright CE; Angus JA
    Br J Pharmacol; 1996 Sep; 119(1):49-56. PubMed ID: 8872356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydropyridine- and neurotoxin-sensitive and -insensitive calcium currents in acutely dissociated neurons of the rat central amygdala.
    Yu B; Shinnick-Gallagher P
    J Neurophysiol; 1997 Feb; 77(2):690-701. PubMed ID: 9065841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Block of non-L-, non-N-type Ca2+ channels in rat insulinoma RINm5F cells by omega-agatoxin IVA and omega-conotoxin MVIIC.
    Magnelli V; Pollo A; Sher E; Carbone E
    Pflugers Arch; 1995 Apr; 429(6):762-71. PubMed ID: 7603830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Lambert-Eaton myasthenic syndrome antibodies on autonomic neurons in the mouse.
    Waterman SA; Lang B; Newsom-Davis J
    Ann Neurol; 1997 Aug; 42(2):147-56. PubMed ID: 9266723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of calcium currents and exocytosis by Lambert-Eaton syndrome antibodies in human lung cancer cells.
    Viglione MP; O'Shaughnessy TJ; Kim YI
    J Physiol; 1995 Oct; 488 ( Pt 2)(Pt 2):303-17. PubMed ID: 8568672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxityping rat brain calcium channels with omega-toxins from spider and cone snail venoms.
    Adams ME; Myers RA; Imperial JS; Olivera BM
    Biochemistry; 1993 Nov; 32(47):12566-70. PubMed ID: 8251474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-type calcium channels unmasked by cell-permeant Ca2+ buffer at mouse motor nerve terminals.
    Urbano FJ; Uchitel OD
    Pflugers Arch; 1999 Mar; 437(4):523-8. PubMed ID: 10089564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Ca2+ channel blocker neurotoxins on transmitter release and presynaptic currents at the mouse neuromuscular junction.
    Katz E; Protti DA; Ferro PA; Rosato Siri MD; Uchitel OD
    Br J Pharmacol; 1997 Aug; 121(8):1531-40. PubMed ID: 9283685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal ganglion neurons express a toxin-resistant developmentally regulated novel type of high-voltage-activated calcium channel.
    Rothe T; Grantyn R
    J Neurophysiol; 1994 Nov; 72(5):2542-6. PubMed ID: 7884480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dihydropyridines, phenylalkylamines and benzothiazepines block N-, P/Q- and R-type calcium currents.
    Diochot S; Richard S; Baldy-Moulinier M; Nargeot J; Valmier J
    Pflugers Arch; 1995 Nov; 431(1):10-9. PubMed ID: 8584405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mu-opioid and GABA(B) receptors modulate different types of Ca2+ currents in rat nodose ganglion neurons.
    Rusin KI; Moises HC
    Neuroscience; 1998 Aug; 85(3):939-56. PubMed ID: 9639286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incidence of serum anti-P/O-type and anti-N-type calcium channel autoantibodies in the Lambert-Eaton myasthenic syndrome.
    Motomura M; Lang B; Johnston I; Palace J; Vincent A; Newsom-Davis J
    J Neurol Sci; 1997 Mar; 147(1):35-42. PubMed ID: 9094058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased calcium currents in motor nerve terminals of mice with Lambert-Eaton myasthenic syndrome.
    Smith DO; Conklin MW; Jensen PJ; Atchison WD
    J Physiol; 1995 Aug; 487(1):115-23. PubMed ID: 7473242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the type of calcium channel primarily regulating GABA exocytosis from brain nerve endings.
    Sitges M; Chiu LM
    Neurochem Res; 1995 Sep; 20(9):1073-80. PubMed ID: 8570012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of invertebrate peptide toxins to establish Ca2+ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices.
    Nooney JM; Lodge D
    Eur J Pharmacol; 1996 Jun; 306(1-3):41-50. PubMed ID: 8813613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lambert-Eaton myasthenic syndrome immunoglobulins react with multiple types of calcium channels in small-cell lung carcinoma.
    Meriney SD; Hulsizer SC; Lennon VA; Grinnell AD
    Ann Neurol; 1996 Nov; 40(5):739-49. PubMed ID: 8957015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.