These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

882 related articles for article (PubMed ID: 9744954)

  • 1. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns.
    Steriade M; Amzica F; Neckelmann D; Timofeev I
    J Neurophysiol; 1998 Sep; 80(3):1456-79. PubMed ID: 9744952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms.
    Neckelmann D; Amzica F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1480-94. PubMed ID: 9744953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus.
    Steriade M; Contreras D
    J Neurophysiol; 1998 Sep; 80(3):1439-55. PubMed ID: 9744951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep oscillations developing into seizures in corticothalamic systems.
    Steriade M; Amzica F
    Epilepsia; 2003; 44 Suppl 12():9-20. PubMed ID: 14641557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity.
    Steriade M; Amzica F
    J Neurophysiol; 1994 Nov; 72(5):2051-69. PubMed ID: 7884444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity.
    Steriade M; Contreras D
    J Neurosci; 1995 Jan; 15(1 Pt 2):623-42. PubMed ID: 7823168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
    Contreras D; Steriade M
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates.
    Grenier F; Timofeev I; Steriade M
    J Neurophysiol; 2003 Feb; 89(2):841-52. PubMed ID: 12574462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures.
    Lytton WW; Contreras D; Destexhe A; Steriade M
    J Neurophysiol; 1997 Apr; 77(4):1679-96. PubMed ID: 9114229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons.
    Avoli M; Gloor P; Kostopoulos G; Gotman J
    J Neurophysiol; 1983 Oct; 50(4):819-37. PubMed ID: 6631465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
    Steriade M
    Cereb Cortex; 1997 Sep; 7(6):583-604. PubMed ID: 9276182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular study of excitability in the seizure-prone neocortex in vivo.
    Steriade M; Amzica F
    J Neurophysiol; 1999 Dec; 82(6):3108-22. PubMed ID: 10601445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates.
    Grenier F; Timofeev I; Steriade M
    J Neurophysiol; 2001 Oct; 86(4):1884-98. PubMed ID: 11600648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.
    Steriade M; Dossi RC; Nuñez A
    J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami.
    Steriade M; Deschênes M; Domich L; Mulle C
    J Neurophysiol; 1985 Dec; 54(6):1473-97. PubMed ID: 4087044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.