BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

887 related articles for article (PubMed ID: 9744954)

  • 1. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns.
    Steriade M; Amzica F; Neckelmann D; Timofeev I
    J Neurophysiol; 1998 Sep; 80(3):1456-79. PubMed ID: 9744952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms.
    Neckelmann D; Amzica F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1480-94. PubMed ID: 9744953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus.
    Steriade M; Contreras D
    J Neurophysiol; 1998 Sep; 80(3):1439-55. PubMed ID: 9744951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep oscillations developing into seizures in corticothalamic systems.
    Steriade M; Amzica F
    Epilepsia; 2003; 44 Suppl 12():9-20. PubMed ID: 14641557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity.
    Steriade M; Amzica F
    J Neurophysiol; 1994 Nov; 72(5):2051-69. PubMed ID: 7884444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity.
    Steriade M; Contreras D
    J Neurosci; 1995 Jan; 15(1 Pt 2):623-42. PubMed ID: 7823168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.
    Contreras D; Steriade M
    J Physiol; 1996 Jan; 490 ( Pt 1)(Pt 1):159-79. PubMed ID: 8745285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates.
    Grenier F; Timofeev I; Steriade M
    J Neurophysiol; 2003 Feb; 89(2):841-52. PubMed ID: 12574462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
    Steriade M; Contreras D; Curró Dossi R; Nuñez A
    J Neurosci; 1993 Aug; 13(8):3284-99. PubMed ID: 8340808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures.
    Lytton WW; Contreras D; Destexhe A; Steriade M
    J Neurophysiol; 1997 Apr; 77(4):1679-96. PubMed ID: 9114229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats.
    Timofeev I; Steriade M
    J Neurophysiol; 1996 Dec; 76(6):4152-68. PubMed ID: 8985908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
    Contreras D; Steriade M
    J Neurosci; 1995 Jan; 15(1 Pt 2):604-22. PubMed ID: 7823167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons.
    Avoli M; Gloor P; Kostopoulos G; Gotman J
    J Neurophysiol; 1983 Oct; 50(4):819-37. PubMed ID: 6631465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.
    Steriade M
    Cereb Cortex; 1997 Sep; 7(6):583-604. PubMed ID: 9276182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular study of excitability in the seizure-prone neocortex in vivo.
    Steriade M; Amzica F
    J Neurophysiol; 1999 Dec; 82(6):3108-22. PubMed ID: 10601445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates.
    Grenier F; Timofeev I; Steriade M
    J Neurophysiol; 2001 Oct; 86(4):1884-98. PubMed ID: 11600648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.
    Steriade M; Dossi RC; Nuñez A
    J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami.
    Steriade M; Deschênes M; Domich L; Mulle C
    J Neurophysiol; 1985 Dec; 54(6):1473-97. PubMed ID: 4087044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.