These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
882 related articles for article (PubMed ID: 9744954)
21. Changes in neuronal conductance during different components of cortically generated spike-wave seizures. Neckelmann D; Amzica F; Steriade M Neuroscience; 2000; 96(3):475-85. PubMed ID: 10717428 [TBL] [Abstract][Full Text] [Related]
22. Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Steriade M; Nuñez A; Amzica F J Neurosci; 1993 Aug; 13(8):3266-83. PubMed ID: 8340807 [TBL] [Abstract][Full Text] [Related]
23. Neocortical seizures: initiation, development and cessation. Timofeev I; Steriade M Neuroscience; 2004; 123(2):299-336. PubMed ID: 14698741 [TBL] [Abstract][Full Text] [Related]
24. The role of chloride-dependent inhibition and the activity of fast-spiking neurons during cortical spike-wave electrographic seizures. Timofeev I; Grenier F; Steriade M Neuroscience; 2002; 114(4):1115-32. PubMed ID: 12379264 [TBL] [Abstract][Full Text] [Related]
25. Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Grenier F; Timofeev I; Steriade M Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13929-34. PubMed ID: 9811903 [TBL] [Abstract][Full Text] [Related]
26. Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. Steriade M; Contreras D; Amzica F; Timofeev I J Neurosci; 1996 Apr; 16(8):2788-808. PubMed ID: 8786454 [TBL] [Abstract][Full Text] [Related]
27. Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures. Timofeev I; Grenier F; Steriade M J Neurophysiol; 2004 Aug; 92(2):1133-43. PubMed ID: 14749320 [TBL] [Abstract][Full Text] [Related]
28. Spontaneous and artificial activation of neocortical seizures. Amzica F; Steriade M J Neurophysiol; 1999 Dec; 82(6):3123-38. PubMed ID: 10601446 [TBL] [Abstract][Full Text] [Related]
29. Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses. Nuñez A; Amzica F; Steriade M J Neurophysiol; 1993 Jul; 70(1):418-30. PubMed ID: 8395586 [TBL] [Abstract][Full Text] [Related]
30. Cerebellar-responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: in vivo electrophysiology. Sawyer SF; Young SJ; Groves PM; Tepper JM Neuroscience; 1994 Dec; 63(3):711-24. PubMed ID: 7898672 [TBL] [Abstract][Full Text] [Related]
31. Relations between cortical and thalamic cellular activities during absence seizures in rats. Seidenbecher T; Staak R; Pape HC Eur J Neurosci; 1998 Mar; 10(3):1103-12. PubMed ID: 9753178 [TBL] [Abstract][Full Text] [Related]
32. Impact of network activities on neuronal properties in corticothalamic systems. Steriade M J Neurophysiol; 2001 Jul; 86(1):1-39. PubMed ID: 11431485 [TBL] [Abstract][Full Text] [Related]
33. Physiological characteristics of anterior thalamic nuclei, a group devoid of inputs from reticular thalamic nucleus. Paré D; Steriade M; Deschênes M; Oakson G J Neurophysiol; 1987 Jun; 57(6):1669-85. PubMed ID: 3037038 [TBL] [Abstract][Full Text] [Related]
34. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. Steriade M; Nuñez A; Amzica F J Neurosci; 1993 Aug; 13(8):3252-65. PubMed ID: 8340806 [TBL] [Abstract][Full Text] [Related]
35. Cortical and thalamic components of neocortical kindling-induced epileptogenesis in behaving cats. Nita DA; Cissé Y; Fröhlich F; Timofeev I Exp Neurol; 2008 Jun; 211(2):518-28. PubMed ID: 18423621 [TBL] [Abstract][Full Text] [Related]
36. Cellular mechanisms underlying intrathalamic augmenting responses of reticular and relay neurons. Timofeev I; Steriade M J Neurophysiol; 1998 May; 79(5):2716-29. PubMed ID: 9582240 [TBL] [Abstract][Full Text] [Related]
37. Phase-dependent modulation of cortical and thalamic sensory responses during spike-and-wave discharges. Williams MS; Lecas S; Charpier S; Mahon S Epilepsia; 2020 Feb; 61(2):330-341. PubMed ID: 31912497 [TBL] [Abstract][Full Text] [Related]
38. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. Deschênes M; Paradis M; Roy JP; Steriade M J Neurophysiol; 1984 Jun; 51(6):1196-219. PubMed ID: 6737028 [TBL] [Abstract][Full Text] [Related]
39. Synchronization of low-frequency rhythms in corticothalamic networks. Contreras D; Steriade M Neuroscience; 1997 Jan; 76(1):11-24. PubMed ID: 8971755 [TBL] [Abstract][Full Text] [Related]
40. Membrane bistability in thalamic reticular neurons during spindle oscillations. Fuentealba P; Timofeev I; Bazhenov M; Sejnowski TJ; Steriade M J Neurophysiol; 2005 Jan; 93(1):294-304. PubMed ID: 15331618 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]