These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 9745736)

  • 1. Modeling otoacoustic emission and hearing threshold fine structures.
    Talmadge CL; Tubis A; Long GR; Piskorski P
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1517-43. PubMed ID: 9745736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2021-43. PubMed ID: 14587602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of distortion product otoacoustic emissions and hearing threshold.
    Pienkowski M; Kunov H
    J Acoust Soc Am; 2001 Apr; 109(4):1496-502. PubMed ID: 11325121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering.
    Siegel JH; Cerka AJ; Recio-Spinoso A; Temchin AN; van Dijk P; Ruggero MA
    J Acoust Soc Am; 2005 Oct; 118(4):2434-43. PubMed ID: 16266165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring distortion product otoacoustic emissions using continuously sweeping primaries.
    Long GR; Talmadge CL; Lee J
    J Acoust Soc Am; 2008 Sep; 124(3):1613-26. PubMed ID: 19045653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of aging on otoacoustic emissions.
    Stover L; Norton SJ
    J Acoust Soc Am; 1993 Nov; 94(5):2670-81. PubMed ID: 8270743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of periodicity in the spectrum of evoked otoacoustic emissions.
    Zweig G; Shera CA
    J Acoust Soc Am; 1995 Oct; 98(4):2018-47. PubMed ID: 7593924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evoked otoacoustic emissions as cochlear Bragg reflections.
    Strube HW
    Hear Res; 1989 Mar; 38(1-2):35-45. PubMed ID: 2708158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling of cochlear mechanics.
    Neely ST
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):345-52. PubMed ID: 4031241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interindividual variation of sensitivity to frequency modulation: its relation with click-evoked and distortion product otoacoustic emissions.
    Otsuka S; Furukawa S; Yamagishi S; Hirota K; Kashino M
    J Assoc Res Otolaryngol; 2014 Apr; 15(2):175-86. PubMed ID: 24504749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distortion product emissions in humans. II. Relations to acoustic immittance and stimulus frequency and spontaneous otoacoustic emissions in normally hearing subjects.
    Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK
    Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():15-29. PubMed ID: 2110796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient evoked otoacoustic emission input/output function and cochlear reflectivity: experiment and model.
    Sisto R; Moleti A
    J Acoust Soc Am; 2008 Nov; 124(5):2995-3008. PubMed ID: 19045787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spiral staircase: tonotopic microstructure and cochlear tuning.
    Shera CA
    J Neurosci; 2015 Mar; 35(11):4683-90. PubMed ID: 25788685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive measurement of the cochlear traveling-wave ratio.
    Shera CA; Zweig G
    J Acoust Soc Am; 1993 Jun; 93(6):3333-52. PubMed ID: 8326061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filtering of distortion-product otoacoustic emissions in the inner ear of birds and lizards.
    Taschenberger G; Gallo L; Manley GA
    Hear Res; 1995 Nov; 91(1-2):87-92. PubMed ID: 8647729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.