BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9745739)

  • 1. The auditory evoked potential difference tone and cubic difference tone measured from the inferior colliculus of the chinchilla.
    Arnold S; Burkard R
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1565-73. PubMed ID: 9745739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of interaural attenuation to investigate the validity of a dichotic difference tone response recorded from the inferior colliculus in the chinchilla.
    Arnold S; Burkard R
    J Acoust Soc Am; 2000 Mar; 107(3):1541-7. PubMed ID: 10738808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory distortion products measured with averaged auditory evoked potentials.
    Chertoff ME; Hecox KE; Goldstein R
    J Speech Hear Res; 1992 Feb; 35(1):157-66. PubMed ID: 1735965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of nembutal anesthesia on the auditory steady-state response (ASSR) from the inferior colliculus and auditory cortex of the chinchilla.
    Szalda K; Burkard R
    Hear Res; 2005 May; 203(1-2):32-44. PubMed ID: 15855028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2f1-f2 distortion product otoacoustic emissions in White Leghorn chickens (Gallus domesticus): effects of frequency ratio and relative level.
    Burkard R; Salvi R; Chen L
    Audiol Neurootol; 1996; 1(4):197-213. PubMed ID: 9390802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea.
    Cooper NP; Rhode WS
    J Neurophysiol; 1997 Jul; 78(1):261-70. PubMed ID: 9242278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inner hair cell loss and steady-state potentials from the inferior colliculus and auditory cortex of the chinchilla.
    Arnold S; Burkard R
    J Acoust Soc Am; 2002 Aug; 112(2):590-9. PubMed ID: 12186040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning curves of the difference tone auditory nerve neurophonic.
    Henry KR
    Hear Res; 1996 Sep; 99(1-2):160-7. PubMed ID: 8970824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates.
    Abdala C
    J Acoust Soc Am; 1996 Dec; 100(6):3726-40. PubMed ID: 8969474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-field responses from the round window, inferior colliculus, and auditory cortex of the unanesthetized chinchilla: manipulations of noiseburst level and rate.
    Burkard RF; Secor CA; Salvi RJ
    J Acoust Soc Am; 1999 Jul; 106(1):304-12. PubMed ID: 10420623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex differences in auditory sensitivity of chinchillas before and after exposure to impulse noise.
    McFadden SL; Henselman LW; Zheng XY
    Ear Hear; 1999 Apr; 20(2):164-74. PubMed ID: 10229517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of a second stimulus on the auditory steady state response (ASSR) from the inferior colliculus of the chinchilla.
    McNerney KM; Burkard RF
    Int J Audiol; 2010 Aug; 49(8):561-73. PubMed ID: 20210591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological evidence of nonlinear distortion products to two-tone stimuli.
    Rickman MD; Chertoff ME; Hecox KE
    J Acoust Soc Am; 1991 Jun; 89(6):2818-26. PubMed ID: 1918625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of altering organ of Corti on cochlear distortion products f2 - f1 and 2f1 - f2.
    Siegel JH; Kim DO; Molnar CE
    J Neurophysiol; 1982 Feb; 47(2):303-28. PubMed ID: 7062102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of distortion product otoacoustic emission measurements. II. Estimating tuning characteristics using three stimulus tones.
    Mills DM
    J Acoust Soc Am; 1998 Jan; 103(1):507-23. PubMed ID: 9440336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic distortion products in humans: systematic changes in amplitudes as a function of f2/f1 ratio.
    Harris FP; Lonsbury-Martin BL; Stagner BB; Coats AC; Martin GK
    J Acoust Soc Am; 1989 Jan; 85(1):220-9. PubMed ID: 2921404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils.
    Mills DM
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2586-602. PubMed ID: 10830382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory nerve neurophonic produced by the frequency difference of two simultaneously presented tones.
    Henry KR
    Hear Res; 1996 Sep; 99(1-2):151-9. PubMed ID: 8970823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.
    Lockmann ALV; MourĂ£o FAG; Moraes MFD
    J Neurophysiol; 2017 Aug; 118(2):1012-1020. PubMed ID: 28446582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.