These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Signal transducing properties of the N-formyl peptide receptor expressed in undifferentiated HL60 cells. Prossnitz ER; Quehenberger O; Cochrane CG; Ye RD J Immunol; 1993 Nov; 151(10):5704-15. PubMed ID: 8228256 [TBL] [Abstract][Full Text] [Related]
5. Multiple receptor states are required to describe both kinetic binding and activation of neutrophils via N-formyl peptide receptor ligands. Kinzer-Ursem TL; Sutton KL; Waller A; Omann GM; Linderman JJ Cell Signal; 2006 Oct; 18(10):1732-47. PubMed ID: 16530386 [TBL] [Abstract][Full Text] [Related]
6. The ligand binding site of the formyl peptide receptor maps in the transmembrane region. Miettinen HM; Mills JS; Gripentrog JM; Dratz EA; Granger BL; Jesaitis AJ J Immunol; 1997 Oct; 159(8):4045-54. PubMed ID: 9378994 [TBL] [Abstract][Full Text] [Related]
7. Fixation traps formyl peptide receptors in high and low affinity forms that can be regulated by GTP[S] in the absence of ligand. Domalewski MD; Guyer DA; Freer RJ; Muthukumaraswamy N; Sklar LA J Recept Signal Transduct Res; 1996; 16(1-2):59-75. PubMed ID: 8771531 [TBL] [Abstract][Full Text] [Related]
8. Subsecond modulation of formyl peptide-linked guanine nucleotide-binding proteins by guanosine 5'-O-(3-thio)triphosphate in permeabilized neutrophils. Neubig RR; Sklar LA Mol Pharmacol; 1993 May; 43(5):734-40. PubMed ID: 8502230 [TBL] [Abstract][Full Text] [Related]
9. Relationship of ligand-receptor dynamics to actin polymerization in RBL-2H3 cells transfected with the human formyl peptide receptor. Hall AL; Wilson BS; Pfeiffer JR; Oliver JM; Sklar LA J Leukoc Biol; 1997 Oct; 62(4):535-46. PubMed ID: 9335325 [TBL] [Abstract][Full Text] [Related]
10. A threshold level of coupled G-proteins is required to transduce neutrophil responses. Omann GM; Harter JM; Hassan N; Mansfield PJ; Suchard SJ; Neubig RR J Immunol; 1992 Sep; 149(6):2172-8. PubMed ID: 1517577 [TBL] [Abstract][Full Text] [Related]
11. Lack of correlation between induction of chemotactic peptide receptors and stimulus-induced actin polymerization in HL-60 cells treated with dibutyryl cyclic adenosine monophosphate or retinoic acid. Rao KM; Currie MS; Ruff JC; Cohen HJ Cancer Res; 1988 Dec; 48(23):6721-6. PubMed ID: 2846157 [TBL] [Abstract][Full Text] [Related]
12. Cell polarization as a possible mechanism of response termination. Model MA; Omann GM Biochem Biophys Res Commun; 1996 Jul; 224(2):516-21. PubMed ID: 8702420 [TBL] [Abstract][Full Text] [Related]
14. Kinetic analysis of chemotactic peptide-induced actin polymerization in neutrophils. Wang DH; Berry K; Howard TH Cell Motil Cytoskeleton; 1990; 16(1):80-7. PubMed ID: 2354527 [TBL] [Abstract][Full Text] [Related]
15. Strategies for positioning fluorescent probes and crosslinkers on formyl peptide ligands. Vilven JC; Domalewski M; Prossnitz ER; Ye RD; Muthukumaraswamy N; Harris RB; Freer RJ; Sklar LA J Recept Signal Transduct Res; 1998; 18(2-3):187-221. PubMed ID: 9651885 [TBL] [Abstract][Full Text] [Related]
16. Regulatory interaction of N-formyl peptide chemoattractant receptors with the membrane skeleton in human neutrophils. Klotz KN; Krotec KL; Gripentrog J; Jesaitis AJ J Immunol; 1994 Jan; 152(2):801-10. PubMed ID: 8283053 [TBL] [Abstract][Full Text] [Related]
17. Influence of botulinum C2 toxin on F-actin and N-formyl peptide receptor dynamics in human neutrophils. Norgauer J; Just I; Aktories K; Sklar LA J Cell Biol; 1989 Sep; 109(3):1133-40. PubMed ID: 2768337 [TBL] [Abstract][Full Text] [Related]
18. Subtle differences between human and rabbit neutrophil receptors shown by the secretagogue activity of constrained formyl peptides. Dentino AR; Raj PA; De Nardin E Arch Biochem Biophys; 1997 Jan; 337(2):267-74. PubMed ID: 9016822 [TBL] [Abstract][Full Text] [Related]
19. Desensitization of formyl peptide receptors is abolished in calcium ionophore-primed neutrophils: an association of the ligand-receptor complex to the cytoskeleton is not required for a rapid termination of the NADPH-oxidase response. Liu L; Harbecke O; Elwing H; Follin P; Karlsson A; Dahlgren C J Immunol; 1998 Mar; 160(5):2463-8. PubMed ID: 9498791 [TBL] [Abstract][Full Text] [Related]
20. Ligand-receptor dynamics and signal amplification in the neutrophil. Sklar LA; Bokoch GM; Swann WN; Comstock C; Smolen JE Int J Tissue React; 1987; 9(4):277-84. PubMed ID: 3114162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]