These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1019 related articles for article (PubMed ID: 9746323)
1. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323 [TBL] [Abstract][Full Text] [Related]
2. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration. Aliev MK; Saks VA Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806 [TBL] [Abstract][Full Text] [Related]
3. Is there the creatine kinase equilibrium in working heart cells? Saks VA; Aliev MK Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521 [TBL] [Abstract][Full Text] [Related]
4. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325 [TBL] [Abstract][Full Text] [Related]
5. Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channelling in muscle cells. Saks V; Dos Santos P; Gellerich FN; Diolez P Mol Cell Biochem; 1998 Jul; 184(1-2):291-307. PubMed ID: 9746326 [TBL] [Abstract][Full Text] [Related]
6. Metabolic control of contractile performance in isolated perfused rat heart. Analysis of experimental data by reaction:diffusion mathematical model. Dos Santos P; Aliev MK; Diolez P; Duclos F; Besse P; Bonoron-Adèle S; Sikk P; Canioni P; Saks VA J Mol Cell Cardiol; 2000 Sep; 32(9):1703-34. PubMed ID: 10966833 [TBL] [Abstract][Full Text] [Related]
7. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart. Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466 [TBL] [Abstract][Full Text] [Related]
8. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies. Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089 [TBL] [Abstract][Full Text] [Related]
9. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR. Yoshizaki K; Watari H; Radda GK Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769 [TBL] [Abstract][Full Text] [Related]
10. CK flux or direct ATP transfer: versatility of energy transfer pathways evidenced by NMR in the perfused heart. Joubert F; Mateo P; Gillet B; Beloeil JC; Mazet JL; Hoerter JA Mol Cell Biochem; 2004; 256-257(1-2):43-58. PubMed ID: 14977169 [TBL] [Abstract][Full Text] [Related]
11. The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Saks V; Kaambre T; Guzun R; Anmann T; Sikk P; Schlattner U; Wallimann T; Aliev M; Vendelin M Subcell Biochem; 2007; 46():27-65. PubMed ID: 18652071 [TBL] [Abstract][Full Text] [Related]
12. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy. Williams JP; Headrick JP Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892 [TBL] [Abstract][Full Text] [Related]
14. Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration. Saks VA; Kongas O; Vendelin M; Kay L Acta Physiol Scand; 2000 Apr; 168(4):635-41. PubMed ID: 10759600 [TBL] [Abstract][Full Text] [Related]
15. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis. Saks VA; Khuchua ZA; Vasilyeva EV; Belikova OYu ; Kuznetsov AV Mol Cell Biochem; 1994; 133-134():155-92. PubMed ID: 7808453 [TBL] [Abstract][Full Text] [Related]
16. Creatine kinase kinetics, ATP turnover, and cardiac performance in hearts depleted of creatine with the substrate analogue beta-guanidinopropionic acid. Shoubridge EA; Jeffry FM; Keogh JM; Radda GK; Seymour AM Biochim Biophys Acta; 1985 Oct; 847(1):25-32. PubMed ID: 4052460 [TBL] [Abstract][Full Text] [Related]
17. Isozymes of creatine kinase in mammalian cell cultures. Van Brussel E; Yang JJ; Seraydarian MW J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402 [TBL] [Abstract][Full Text] [Related]
18. Functional coupling of creatine kinases in muscles: species and tissue specificity. Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324 [TBL] [Abstract][Full Text] [Related]
19. 31P NMR detection of subcellular creatine kinase fluxes in the perfused rat heart: contractility modifies energy transfer pathways. Joubert F; Mazet JL; Mateo P; Hoerter JA J Biol Chem; 2002 May; 277(21):18469-76. PubMed ID: 11886866 [TBL] [Abstract][Full Text] [Related]
20. Estimation of heart mitochondrial creatine kinase flux using magnetization transfer NMR spectroscopy. Zahler R; Ingwall JS Am J Physiol; 1992 Apr; 262(4 Pt 2):H1022-8. PubMed ID: 1566885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]