BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 9746324)

  • 1. Functional coupling of creatine kinases in muscles: species and tissue specificity.
    Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K
    Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial creatine kinase isoform expression does not correlate with its mode of action.
    Anflous K; Veksler V; Mateo P; Samson F; Saks V; Ventura-Clapier R
    Biochem J; 1997 Feb; 322 ( Pt 1)(Pt 1):73-8. PubMed ID: 9078245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmentation of creatine kinases during perinatal development of mammalian heart.
    Hoerter JA; Ventura-Clapier R; Kuznetsov A
    Mol Cell Biochem; 1994; 133-134():277-86. PubMed ID: 7808459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional adaptations of striated muscles to CK deficiency.
    Ventura-Clapier R; Kaasik A; Veksler V
    Mol Cell Biochem; 2004; 256-257(1-2):29-41. PubMed ID: 14977168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channelling in muscle cells.
    Saks V; Dos Santos P; Gellerich FN; Diolez P
    Mol Cell Biochem; 1998 Jul; 184(1-2):291-307. PubMed ID: 9746326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology.
    Wallimann T; Dolder M; Schlattner U; Eder M; Hornemann T; O'Gorman E; Rück A; Brdiczka D
    Biofactors; 1998; 8(3-4):229-34. PubMed ID: 9914824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A comparative study of the role of creatine phosphokinase isoenzymes in energy metabolism of skeletal and heart muscle].
    Saks VA; Seppet EK; Liulina NV
    Biokhimiia; 1977 Apr; 42(4):579-88. PubMed ID: 870086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintained coupling of oxidative phosphorylation to creatine kinase activity in sarcomeric mitochondrial creatine kinase-deficient mice.
    Boehm E; Veksler V; Mateo P; Lenoble C; Wieringa B; Ventura-Clapier R
    J Mol Cell Cardiol; 1998 May; 30(5):901-12. PubMed ID: 9618231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental changes in regulation of mitochondrial respiration by ADP and creatine in rat heart in vivo.
    Tiivel T; Kadaya L; Kuznetsov A; Käämbre T; Peet N; Sikk P; Braun U; Ventura-Clapier R; Saks V; Seppet EK
    Mol Cell Biochem; 2000 May; 208(1-2):119-28. PubMed ID: 10939635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creatine kinase in non-muscle tissues and cells.
    Wallimann T; Hemmer W
    Mol Cell Biochem; 1994; 133-134():193-220. PubMed ID: 7808454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ compartmentation of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve.
    Wegmann G; Zanolla E; Eppenberger HM; Wallimann T
    J Muscle Res Cell Motil; 1992 Aug; 13(4):420-35. PubMed ID: 1401038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites.
    Schlattner U; Klaus A; Ramirez Rios S; Guzun R; Kay L; Tokarska-Schlattner M
    Amino Acids; 2016 Aug; 48(8):1751-74. PubMed ID: 27318991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creatine kinase and mitochondrial respiration in hearts of trout, cod and freshwater turtle.
    Birkedal R; Gesser H
    J Comp Physiol B; 2003 Aug; 173(6):493-9. PubMed ID: 12856133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of creatine phosphokinase in cellular function and metabolism.
    Saks VA; Rosenshtraukh LV; Smirnov VN; Chazov EI
    Can J Physiol Pharmacol; 1978 Oct; 56(5):691-706. PubMed ID: 361188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Re-evaluation of the structure and physiological function of guanidino kinases in fruitfly (Drosophila), sea urchin (Psammechinus miliaris) and man.
    Wyss M; Maughan D; Wallimann T
    Biochem J; 1995 Jul; 309 ( Pt 1)(Pt 1):255-61. PubMed ID: 7619066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible MM-creatine kinase binding to cardiac myofibrils.
    Ventura-Clapier R; Saks VA; Vassort G; Lauer C; Elizarova GV
    Am J Physiol; 1987 Sep; 253(3 Pt 1):C444-55. PubMed ID: 3307451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isozymes of creatine kinase in mammalian cell cultures.
    Van Brussel E; Yang JJ; Seraydarian MW
    J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired voluntary running capacity of creatine kinase-deficient mice.
    Momken I; Lechêne P; Koulmann N; Fortin D; Mateo P; Doan BT; Hoerter J; Bigard X; Veksler V; Ventura-Clapier R
    J Physiol; 2005 Jun; 565(Pt 3):951-64. PubMed ID: 15831533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.