These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 9746330)

  • 1. Role of mitochondrial calcium transport in the control of substrate oxidation.
    Hansford RG; Zorov D
    Mol Cell Biochem; 1998 Jul; 184(1-2):359-69. PubMed ID: 9746330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of calcium in respiratory control.
    Hansford RG
    Med Sci Sports Exerc; 1994 Jan; 26(1):44-51. PubMed ID: 8133737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological role of mitochondrial Ca2+ transport.
    Hansford RG
    J Bioenerg Biomembr; 1994 Oct; 26(5):495-508. PubMed ID: 7896765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching.
    Liu T; O'Rourke B
    Circ Res; 2008 Aug; 103(3):279-88. PubMed ID: 18599868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramitochondrial free calcium in cardiac myocytes in relation to dehydrogenase activation.
    Di Lisa F; Gambassi G; Spurgeon H; Hansford RG
    Cardiovasc Res; 1993 Oct; 27(10):1840-4. PubMed ID: 8275533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat.
    McCormack JG; Denton RM
    Biochem J; 1980 Jul; 190(1):95-105. PubMed ID: 6778477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alcohol inhibits the activation of NAD-linked dehydrogenases by calcium in brain and heart mitochondria.
    Li HL; Moreno-Sanchez R; Rottenberg H
    Biochim Biophys Acta; 1995 Jun; 1236(2):306-16. PubMed ID: 7794970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics.
    Cortassa S; Aon MA; Marbán E; Winslow RL; O'Rourke B
    Biophys J; 2003 Apr; 84(4):2734-55. PubMed ID: 12668482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Ca2+ ions in the regulation of intramitochondrial metabolism and energy production in rat heart.
    McCormack JG; Denton RM
    Mol Cell Biochem; 1989 Sep; 89(2):121-5. PubMed ID: 2682206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-dependent effects of calcium on rat retinal mitochondrial respiration: physiological and toxicological studies.
    Medrano CJ; Fox DA
    Toxicol Appl Pharmacol; 1994 Apr; 125(2):309-21. PubMed ID: 8171438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of mitochondrial dehydrogenases by calcium ions.
    Denton RM
    Biochim Biophys Acta; 2009 Nov; 1787(11):1309-16. PubMed ID: 19413950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Ca2+ in the regulation of intramitochondrial energy production in heart.
    McCormack JG; Denton RM
    Biomed Biochim Acta; 1987; 46(8-9):S487-92. PubMed ID: 3325044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The regulation of OXPHOS by extramitochondrial calcium.
    Gellerich FN; Gizatullina Z; Trumbeckaite S; Nguyen HP; Pallas T; Arandarcikaite O; Vielhaber S; Seppet E; Striggow F
    Biochim Biophys Acta; 2010; 1797(6-7):1018-27. PubMed ID: 20144582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues.
    McCormack JG; Denton RM
    Biochim Biophys Acta; 1990 Jul; 1018(2-3):287-91. PubMed ID: 2203475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Ca2+ on the activities of the calcium-sensitive dehydrogenases within the mitochondria of mammalian tissues.
    Denton RM; Rutter GA; Midgley PJ; McCormack JG
    J Cardiovasc Pharmacol; 1988; 12 Suppl 5():S69-72. PubMed ID: 2469881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism.
    McCormack JG; Denton RM
    Dev Neurosci; 1993; 15(3-5):165-73. PubMed ID: 7805568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes.
    Maack C; Cortassa S; Aon MA; Ganesan AN; Liu T; O'Rourke B
    Circ Res; 2006 Jul; 99(2):172-82. PubMed ID: 16778127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The calcium sensitive dehydrogenases of vertebrate mitochondria.
    Denton RM; McCormack JG
    Cell Calcium; 1986 Dec; 7(5-6):377-86. PubMed ID: 3545489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of 2-oxoglutarate dehydrogenase and oxidative phosphorylation by Ca2+ in pancreas and adrenal cortex mitochondria.
    Moreno-Sánchez R; Rodríguez-Enríquez S; Cuéllar A; Corona N
    Arch Biochem Biophys; 1995 Jun; 319(2):432-44. PubMed ID: 7786025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.