These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 9746330)
21. Ca2+ transport by mammalian mitochondria and its role in hormone action. Denton RM; McCormack JG Am J Physiol; 1985 Dec; 249(6 Pt 1):E543-54. PubMed ID: 2417490 [TBL] [Abstract][Full Text] [Related]
23. Altered pyruvate dehydrogenase control and mitochondrial free Ca2+ in hearts of cardiomyopathic hamsters. Di Lisa F; Fan CZ; Gambassi G; Hogue BA; Kudryashova I; Hansford RG Am J Physiol; 1993 Jun; 264(6 Pt 2):H2188-97. PubMed ID: 8322950 [TBL] [Abstract][Full Text] [Related]
24. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences. Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312 [TBL] [Abstract][Full Text] [Related]
25. Influence of NAD-linked dehydrogenase activity on flux through oxidative phosphorylation. Moreno-Sánchez R; Hogue BA; Hansford RG Biochem J; 1990 Jun; 268(2):421-8. PubMed ID: 2363681 [TBL] [Abstract][Full Text] [Related]
26. Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle. Brandes R; Bers DM Circ Res; 1997 Jan; 80(1):82-7. PubMed ID: 8978326 [TBL] [Abstract][Full Text] [Related]
27. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling. Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579 [TBL] [Abstract][Full Text] [Related]
28. The role of calcium in the control of respiration by muscle mitochondria. McMillin JB; Madden MC Med Sci Sports Exerc; 1989 Aug; 21(4):406-10. PubMed ID: 2528667 [TBL] [Abstract][Full Text] [Related]
29. Hormonal regulation of fluxes through pyruvate dehydrogenase and the citric acid cycle in mammalian tissues. Denton RM; McCormack JG; Midgley PJ; Rutter GA Biochem Soc Symp; 1987; 54():127-43. PubMed ID: 3332990 [TBL] [Abstract][Full Text] [Related]
30. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
31. Cytosolic Ca2+ regulates the energization of isolated brain mitochondria by formation of pyruvate through the malate-aspartate shuttle. Gellerich FN; Gizatullina Z; Trumbekaite S; Korzeniewski B; Gaynutdinov T; Seppet E; Vielhaber S; Heinze HJ; Striggow F Biochem J; 2012 May; 443(3):747-55. PubMed ID: 22295911 [TBL] [Abstract][Full Text] [Related]
32. The inhibition of the mitochondrial F1FO-ATPase activity when activated by Ca2+ opens new regulatory roles for NAD. Nesci S; Trombetti F; Ventrella V; Pirini M; Pagliarani A Biol Chem; 2018 Jan; 399(2):197-202. PubMed ID: 28976891 [TBL] [Abstract][Full Text] [Related]
33. Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms. Zima AV; Kockskämper J; Mejia-Alvarez R; Blatter LA J Physiol; 2003 Aug; 550(Pt 3):765-83. PubMed ID: 12824454 [TBL] [Abstract][Full Text] [Related]
34. Mode of mitochondrial Ca2+ clearance and its influence on secretory responses in stimulated chromaffin cells. Warashina A Cell Calcium; 2006 Jan; 39(1):35-46. PubMed ID: 16257445 [TBL] [Abstract][Full Text] [Related]
35. Parallel measurement of oxoglutarate dehydrogenase activity and matrix free Ca2+ in fura-2-loaded heart mitochondria. Lukács GL; Kapus A; Fonyó A FEBS Lett; 1988 Feb; 229(1):219-23. PubMed ID: 2450043 [TBL] [Abstract][Full Text] [Related]
36. Prostaglandin F2alpha potentiates the calcium dependent activation of mitochondrial metabolism in luteal cells. Pitter JG; Szanda G; Duchen MR; Spät A Cell Calcium; 2005 Jan; 37(1):35-44. PubMed ID: 15541462 [TBL] [Abstract][Full Text] [Related]
37. Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes. Kohlhaas M; Maack C Circulation; 2010 Nov; 122(22):2273-80. PubMed ID: 21098439 [TBL] [Abstract][Full Text] [Related]
38. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs. Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335 [TBL] [Abstract][Full Text] [Related]
39. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs). Rueda CB; Llorente-Folch I; Traba J; Amigo I; Gonzalez-Sanchez P; Contreras L; Juaristi I; Martinez-Valero P; Pardo B; Del Arco A; Satrustegui J Biochim Biophys Acta; 2016 Aug; 1857(8):1158-1166. PubMed ID: 27060251 [TBL] [Abstract][Full Text] [Related]
40. Role of mitochondrial Ca2+ in the regulation of cellular energetics. Glancy B; Balaban RS Biochemistry; 2012 Apr; 51(14):2959-73. PubMed ID: 22443365 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]