These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 9746330)

  • 41. Dehydrogenase activation by Ca2+ in cells and tissues.
    Hansford RG
    J Bioenerg Biomembr; 1991 Dec; 23(6):823-54. PubMed ID: 1778993
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distribution of control of oxidative phosphorylation in mitochondria oxidizing NAD-linked substrates.
    Moreno-Sánchez R; Devars S; López-Gómez F; Uribe A; Corona N
    Biochim Biophys Acta; 1991 Nov; 1060(3):284-92. PubMed ID: 1751513
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relation between mitochondrial calcium transport and control of energy metabolism.
    Hansford RG
    Rev Physiol Biochem Pharmacol; 1985; 102():1-72. PubMed ID: 2863864
    [No Abstract]   [Full Text] [Related]  

  • 44. Towards the molecular basis for the regulation of mitochondrial dehydrogenases by calcium ions.
    Nichols BJ; Denton RM
    Mol Cell Biochem; 1995; 149-150():203-12. PubMed ID: 8569730
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency.
    Hickmann FH; Cecatto C; Kleemann D; Monteiro WO; Castilho RF; Amaral AU; Wajner M
    Biochim Biophys Acta; 2015; 1847(6-7):620-8. PubMed ID: 25868874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The fateful encounter of mitochondria with calcium: how did it happen?
    Carafoli E
    Biochim Biophys Acta; 2010; 1797(6-7):595-606. PubMed ID: 20385096
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mitochondrial calcium transport: physiological and pathological relevance.
    Gunter TE; Gunter KK; Sheu SS; Gavin CE
    Am J Physiol; 1994 Aug; 267(2 Pt 1):C313-39. PubMed ID: 8074170
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activation of pyruvate dehydrogenase by electrical stimulation, and low-Na+ perfusion of guinea-pig heart.
    Hansford RG; Hogue B; Prokopczuk A; Wasilewska E; Lewartowski B
    Biochim Biophys Acta; 1990 Jul; 1018(2-3):282-6. PubMed ID: 2393660
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of Ca2+ on flavin-linked complex enzymes in mitochondria isolated from eggs and embryos of sea urchin.
    Fujiwara A; Kamata Y; Yasumasu I
    Dev Growth Differ; 2001 Apr; 43(2):213-21. PubMed ID: 11284970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity.
    Chouhan AK; Ivannikov MV; Lu Z; Sugimori M; Llinas RR; Macleod GT
    J Neurosci; 2012 Jan; 32(4):1233-43. PubMed ID: 22279208
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Minimal model of beta-cell mitochondrial Ca2+ handling.
    Magnus G; Keizer J
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C717-33. PubMed ID: 9277370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Postnatal changes in heart mitochondrial calcium and energy metabolism.
    Wolf WJ; Rex KA; Geshi E; Sordahl LA
    Am J Physiol; 1991 Jul; 261(1 Pt 2):H1-8. PubMed ID: 1858908
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relative activities of NAD- and NADP- isocritric dehydrogenases in bean mitochondria modified by glycerol or NADP.
    Yamamoto Y
    Plant Physiol; 1969 Feb; 44(2):262-6. PubMed ID: 4388200
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decoding of cytosolic calcium oscillations in the mitochondria.
    Hajnóczky G; Robb-Gaspers LD; Seitz MB; Thomas AP
    Cell; 1995 Aug; 82(3):415-24. PubMed ID: 7634331
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modulation of the matrix redox signaling by mitochondrial Ca(2.).
    Santo-Domingo J; Wiederkehr A; De Marchi U
    World J Biol Chem; 2015 Nov; 6(4):310-23. PubMed ID: 26629314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intracellular calcium ions and intramitochondrial Ca2+ in the regulation of energy metabolism in mammalian tissues.
    McCormack JG; Denton RM
    Proc Nutr Soc; 1990 Feb; 49(1):57-75. PubMed ID: 2190228
    [No Abstract]   [Full Text] [Related]  

  • 57. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation.
    Covian R; Balaban RS
    Am J Physiol Heart Circ Physiol; 2012 Oct; 303(8):H940-66. PubMed ID: 22886415
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in mammalian tissues.
    McCormack JG; Denton RM
    Biochem Soc Trans; 1993 Aug; 21 ( Pt 3)(3):793-9. PubMed ID: 8224512
    [No Abstract]   [Full Text] [Related]  

  • 59. Oxidation of External NAD(P)H by Mitochondria from Taproots and Tissue Cultures of Sugar Beet (Beta vulgaris).
    Zottini M; Mandolino G; Zannoni D
    Plant Physiol; 1993 Jun; 102(2):579-585. PubMed ID: 12231847
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells.
    Devin A; Rigoulet M
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C52-8. PubMed ID: 16943247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.