These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. Yabe T; Mitsunami K; Inubushi T; Kinoshita M Circulation; 1995 Jul; 92(1):15-23. PubMed ID: 7788910 [TBL] [Abstract][Full Text] [Related]
43. Energy Deregulation Precedes Alteration in Heart Energy Balance in Young Spontaneously Hypertensive Rats: A Non Invasive In Vivo31P-MR Spectroscopy Follow-Up Study. Deschodt-Arsac V; Arsac L; Magat J; Naulin J; Quesson B; Dos Santos P PLoS One; 2016; 11(9):e0162677. PubMed ID: 27622548 [TBL] [Abstract][Full Text] [Related]
44. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy. Du F; Cooper AJ; Thida T; Sehovic S; Lukas SE; Cohen BM; Zhang X; Ongür D JAMA Psychiatry; 2014 Jan; 71(1):19-27. PubMed ID: 24196348 [TBL] [Abstract][Full Text] [Related]
45. Concentrations of human cardiac phosphorus metabolites determined by SLOOP 31P NMR spectroscopy. Meininger M; Landschütz W; Beer M; Seyfarth T; Horn M; Pabst T; Haase A; Hahn D; Neubauer S; von Kienlin M Magn Reson Med; 1999 Apr; 41(4):657-63. PubMed ID: 10332840 [TBL] [Abstract][Full Text] [Related]
46. Levels of high energy phosphate in the dorsal skin of the foot in normal and diabetic adults: the role of 31P magnetic resonance spectroscopy and direct quantification with high pressure liquid chromatography. Smith DG; Mills WJ; Steen RG; Williams D Foot Ankle Int; 1999 Apr; 20(4):258-62. PubMed ID: 10229283 [TBL] [Abstract][Full Text] [Related]
47. Contributions of 31P-magnetic resonance spectroscopy to the understanding of dilated heart muscle disease. Neubauer S; Horn M; Pabst T; Gödde M; Lübke D; Jilling B; Hahn D; Ertl G Eur Heart J; 1995 Dec; 16 Suppl O():115-8. PubMed ID: 8682076 [TBL] [Abstract][Full Text] [Related]
49. 31P magnetic resonance spectroscopy of the Sherpa heart: a phosphocreatine/adenosine triphosphate signature of metabolic defense against hypobaric hypoxia. Hochachka PW; Clark CM; Holden JE; Stanley C; Ugurbil K; Menon RS Proc Natl Acad Sci U S A; 1996 Feb; 93(3):1215-20. PubMed ID: 8577743 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of altered myocardial high energy phosphate metabolism in patients on maintenance dialysis using phosphorus-31 magnetic resonance spectroscopy. Tagami T; Sakuma H; Matsumura K; Takeda K; Mori S; Takeuchi T; Nakano T Invest Radiol; 1998 Mar; 33(3):171-6. PubMed ID: 9525756 [TBL] [Abstract][Full Text] [Related]
51. 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors improve myocardial high-energy phosphate metabolism in men. Schocke MF; Martinek M; Kremser C; Wolf C; Steinboeck P; Lechleitner M; Jaschke W; Pachinger O; Metzler B J Cardiovasc Magn Reson; 2003; 5(4):595-602. PubMed ID: 14664137 [TBL] [Abstract][Full Text] [Related]
52. In vivo evaluation of intracellular pH and high-energy phosphate metabolites during regional myocardial ischemia in cats using 31P nuclear magnetic resonance. Stein PD; Goldstein S; Sabbah HN; Liu ZQ; Helpern JA; Ewing JR; Lakier JB; Chopp M; LaPenna WF; Welch KM Magn Reson Med; 1986 Apr; 3(2):262-9. PubMed ID: 3713490 [TBL] [Abstract][Full Text] [Related]
53. Magnetic resonance imaging and spectroscopy of the heart. de Roos A; van der Wall EE Curr Opin Cardiol; 1991 Dec; 6(6):946-52. PubMed ID: 10149602 [TBL] [Abstract][Full Text] [Related]
54. [Cardiac energy metabolism in heart valve diseases with 31P MR spectroscopy]. Beer M; Viehrig M; Seyfarth T; Sandstede J; Lipke C; Pabst T; Kenn W; Harre K; Horn M; Landschütz W; von Kienlin M; Neubauer S; Hahn D Radiologe; 2000 Feb; 40(2):162-7. PubMed ID: 10758631 [TBL] [Abstract][Full Text] [Related]
55. Measurement of phosphocreatine to ATP ratio in normal and diseased human heart by 31P magnetic resonance spectroscopy using the rotating frame-depth selection technique. Rajagopalan B; Blackledge MJ; McKenna WJ; Bolas N; Radda GK Ann N Y Acad Sci; 1987; 508():321-32. PubMed ID: 3439707 [TBL] [Abstract][Full Text] [Related]
56. Complementarity of magnetic resonance spectroscopy, positron emission tomography and single photon emission tomography for the in vivo investigation of human cardiac metabolism and neurotransmission. Syrota A; Jehenson P Eur J Nucl Med; 1991; 18(11):897-923. PubMed ID: 1661237 [TBL] [Abstract][Full Text] [Related]
57. Neural-network classification of cardiac disease from Solaiyappan M; Weiss RG; Bottomley PA J Cardiovasc Magn Reson; 2019 Aug; 21(1):49. PubMed ID: 31401975 [TBL] [Abstract][Full Text] [Related]
58. (31)P cardiac magnetic resonance spectroscopy during leg exercise at 3 Tesla. Hudsmith LE; Tyler DJ; Emmanuel Y; Petersen SE; Francis JM; Watkins H; Clarke K; Robson MD; Neubauer S Int J Cardiovasc Imaging; 2009 Dec; 25(8):819-26. PubMed ID: 19697152 [TBL] [Abstract][Full Text] [Related]
59. Effect of L-thyroxine (LT4) and D-thyroxine (DT4) on cardiac function and high-energy phosphate metabolism: a 31P NMR study. Sandhu GS; Steele R; Gonnella NC Magn Reson Med; 1991 Mar; 18(1):237-43. PubMed ID: 2062236 [TBL] [Abstract][Full Text] [Related]
60. Direct measurement of spin-lattice relaxation times of phosphorus metabolites in human myocardium. Neubauer S; Krahe T; Schindler R; Hillenbrand H; Entzeroth C; Horn M; Bauer WR; Stephan T; Lackner K; Haase A Magn Reson Med; 1992 Aug; 26(2):300-7. PubMed ID: 1513251 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]