These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 9746525)

  • 1. Origin of reproducibility in the responses of retinal rods to single photons.
    Rieke F; Baylor DA
    Biophys J; 1998 Oct; 75(4):1836-57. PubMed ID: 9746525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability in the time course of single photon responses from toad rods: termination of rhodopsin's activity.
    Whitlock GG; Lamb TD
    Neuron; 1999 Jun; 23(2):337-51. PubMed ID: 10399939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms regulating variability of the single photon responses of mammalian rod photoreceptors.
    Field GD; Rieke F
    Neuron; 2002 Aug; 35(4):733-47. PubMed ID: 12194872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple phosphorylation sites confer reproducibility of the rod's single-photon responses.
    Doan T; Mendez A; Detwiler PB; Chen J; Rieke F
    Science; 2006 Jul; 313(5786):530-3. PubMed ID: 16873665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses.
    Hamer RD; Nicholas SC; Tranchina D; Liebman PA; Lamb TD
    J Gen Physiol; 2003 Oct; 122(4):419-44. PubMed ID: 12975449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception.
    Reingruber J; Holcman D; Fain GL
    Bioessays; 2015 Nov; 37(11):1243-52. PubMed ID: 26354340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a unified model of vertebrate rod phototransduction.
    Hamer RD; Nicholas SC; Tranchina D; Lamb TD; Jarvinen JL
    Vis Neurosci; 2005; 22(4):417-36. PubMed ID: 16212700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of rhodopsin activity in vision.
    Baylor DA; Burns ME
    Eye (Lond); 1998; 12 ( Pt 3b)():521-5. PubMed ID: 9775212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of cyclic GMP synthesis in retinal rods.
    Burns ME; Mendez A; Chen J; Baylor DA
    Neuron; 2002 Sep; 36(1):81-91. PubMed ID: 12367508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-protein deactivation is rate-limiting for shut-off of the phototransduction cascade.
    Sagoo MS; Lagnado L
    Nature; 1997 Sep; 389(6649):392-5. PubMed ID: 9311782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of rhodopsin deactivation and its role in regulating recovery and reproducibility of rod photoresponse.
    Caruso G; Bisegna P; Lenoci L; Andreucci D; Gurevich VV; Hamm HE; DiBenedetto E
    PLoS Comput Biol; 2010 Dec; 6(12):e1001031. PubMed ID: 21200415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged photoresponses in transgenic mouse rods lacking arrestin.
    Xu J; Dodd RL; Makino CL; Simon MI; Baylor DA; Chen J
    Nature; 1997 Oct; 389(6650):505-9. PubMed ID: 9333241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability in single photon responses: a cut in the Gordian knot of rod phototransduction?
    Pugh EN
    Neuron; 1999 Jun; 23(2):205-8. PubMed ID: 10399927
    [No Abstract]   [Full Text] [Related]  

  • 14. Does rod phototransduction involve the delayed transition of activated rhodopsin to a second, more active catalytic state?
    Pepperberg DR
    Vis Neurosci; 1998; 15(6):1067-78. PubMed ID: 9839971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes.
    Gross OP; Pugh EN; Burns ME
    Neuron; 2012 Oct; 76(2):370-82. PubMed ID: 23083739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Position of rhodopsin photoisomerization on the disk surface confers variability to the rising phase of the single photon response in vertebrate rod photoreceptors.
    Caruso G; Klaus CJ; Hamm HE; Gurevich VV; Makino CL; DiBenedetto E
    PLoS One; 2020; 15(10):e0240527. PubMed ID: 33052986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction.
    Lamb TD; Kraft TW
    Mol Vis; 2016; 22():674-96. PubMed ID: 27375353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Ca++-dependent gain changes in PDE activation in vertebrate rod phototransduction.
    Hamer RD
    Mol Vis; 2000 Dec; 6():265-86. PubMed ID: 11139649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local, nonlinear effects of cGMP and Ca2+ reduce single photon response variability in retinal rods.
    Caruso G; Gurevich VV; Klaus C; Hamm H; Makino CL; DiBenedetto E
    PLoS One; 2019; 14(12):e0225948. PubMed ID: 31805112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.