These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1336 related articles for article (PubMed ID: 9746546)

  • 21. Viscoelasticity of entangled actin networks studied by long-pulse magnetic bead microrheometry.
    Uhde J; Ter-Oganessian N; Pink DA; Sackmann E; Boulbitch A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061916. PubMed ID: 16485983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Osmotic force-controlled microrheometry of entangled actin networks.
    Uhde J; Feneberg W; Ter-Oganessian N; Sackmann E; Boulbitch A
    Phys Rev Lett; 2005 May; 94(19):198102. PubMed ID: 16090216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology.
    Indei T; Schieber JD; Córdoba A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041504. PubMed ID: 22680480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical assessment by magnetocytometry of the cytosolic and cortical cytoskeletal compartments in adherent epithelial cells.
    Laurent VM; Planus E; Fodil R; Isabey D
    Biorheology; 2003; 40(1-3):235-40. PubMed ID: 12454410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: a magnetic bead microrheology study.
    Bausch AR; Hellerer U; Essler M; Aepfelbacher M; Sackmann E
    Biophys J; 2001 Jun; 80(6):2649-57. PubMed ID: 11371441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of interfacial phenomena with osteoblast-like cell adhesion on hydroxyapatite and oxidized polystyrene by the quartz crystal microbalance with dissipation.
    Tagaya M; Ikoma T; Takemura T; Hanagata N; Okuda M; Yoshioka T; Tanaka J
    Langmuir; 2011 Jun; 27(12):7635-44. PubMed ID: 21595447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Viscoelastic properties of single attached cells under compression.
    Peeters EA; Oomens CW; Bouten CV; Bader DL; Baaijens FP
    J Biomech Eng; 2005 Apr; 127(2):237-43. PubMed ID: 15971701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rotational magnetic endosome microrheology: viscoelastic architecture inside living cells.
    Wilhelm C; Gazeau F; Bacri JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061908. PubMed ID: 16241262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model of the viscoelastic behaviour of skin in vivo and study of anisotropy.
    Khatyr F; Imberdis C; Vescovo P; Varchon D; Lagarde JM
    Skin Res Technol; 2004 May; 10(2):96-103. PubMed ID: 15059176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Viscoelastic shear properties of the fresh porcine lens.
    Schachar RA; Chan RW; Fu M
    Br J Ophthalmol; 2007 Mar; 91(3):366-8. PubMed ID: 17035268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy.
    Mahaffy RE; Park S; Gerde E; Käs J; Shih CK
    Biophys J; 2004 Mar; 86(3):1777-93. PubMed ID: 14990504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Red cell extensional recovery and the determination of membrane viscosity.
    Hochmuth RM; Worthy PR; Evans EA
    Biophys J; 1979 Apr; 26(1):101-14. PubMed ID: 262407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study.
    Thoumine O; Cardoso O; Meister JJ
    Eur Biophys J; 1999; 28(3):222-34. PubMed ID: 10192936
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A finite element model of cell deformation during magnetic bead twisting.
    Mijailovich SM; Kojic M; Zivkovic M; Fabry B; Fredberg JJ
    J Appl Physiol (1985); 2002 Oct; 93(4):1429-36. PubMed ID: 12235044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic phagosome motion in J774A.1 macrophages: influence of cytoskeletal drugs.
    Möller W; Nemoto I; Matsuzaki T; Hofer T; Heyder J
    Biophys J; 2000 Aug; 79(2):720-30. PubMed ID: 10920006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioelectrorheological model of the cell. 3. Viscoelastic shear deformation of the membrane.
    Poznański J; Pawłowski P; Fikus M
    Biophys J; 1992 Mar; 61(3):612-20. PubMed ID: 1387010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy.
    Rebelo LM; de Sousa JS; Mendes Filho J; Radmacher M
    Nanotechnology; 2013 Feb; 24(5):055102. PubMed ID: 23324556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating longitudinal changes in the mechanical properties of MCF-7 cells exposed to paclitaxol using particle tracking microrheology.
    El Kaffas A; Bekah D; Rui M; Kumaradas JC; Kolios MC
    Phys Med Biol; 2013 Feb; 58(4):923-36. PubMed ID: 23340402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.
    Smith BA; Tolloczko B; Martin JG; Grütter P
    Biophys J; 2005 Apr; 88(4):2994-3007. PubMed ID: 15665124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 67.