These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 9746605)
1. Localization of a T-cell epitope of superantigen toxic shock syndrome toxin 1 to residues 125 to 158. Hu WG; Zhu XH; Wu YZ; Jia ZC Infect Immun; 1998 Oct; 66(10):4971-5. PubMed ID: 9746605 [TBL] [Abstract][Full Text] [Related]
2. V beta specificity of superantigen TSST-1 plus CD28 costimulation without APCs. Hu WG; Zhu XH Immunol Invest; 1996; 25(5-6):405-11. PubMed ID: 8915678 [TBL] [Abstract][Full Text] [Related]
3. Identification of MHC class II-associated peptides that promote the presentation of toxic shock syndrome toxin-1 to T cells. Hogan RJ; VanBeek J; Broussard DR; Surman SL; Woodland DL J Immunol; 2001 Jun; 166(11):6514-22. PubMed ID: 11359802 [TBL] [Abstract][Full Text] [Related]
4. Characterization of T cell receptors engineered for high affinity against toxic shock syndrome toxin-1. Buonpane RA; Moza B; Sundberg EJ; Kranz DM J Mol Biol; 2005 Oct; 353(2):308-21. PubMed ID: 16171815 [TBL] [Abstract][Full Text] [Related]
5. Toxic shock syndrome toxin-1-induced death is prevented by CTLA4Ig. Saha B; Jaklic B; Harlan DM; Gray GS; June CH; Abe R J Immunol; 1996 Nov; 157(9):3869-75. PubMed ID: 8892617 [TBL] [Abstract][Full Text] [Related]
6. Patterns of interferon-gamma mRNA expression in toxic shock syndrome toxin-1 expanded V beta 11+ T lymphocytes. Zhao YX; Abdelnour A; Ljungdahl A; Olsson T; Tarkowski A Cell Immunol; 1995 Mar; 161(1):28-33. PubMed ID: 7867082 [TBL] [Abstract][Full Text] [Related]
7. Delineation by use of specific monoclonal antibodies of the T-cell receptor and major histocompatibility complex interaction sites on the superantigen toxic shock syndrome toxin 1. Shimonkevitz R; Boen E; Malmstrom S; Brown E; Hurley JM; Kotzin BL; Matsumura M Infect Immun; 1996 Apr; 64(4):1133-9. PubMed ID: 8606069 [TBL] [Abstract][Full Text] [Related]
8. Vbeta-restricted T cell adherence to endothelial cells: a mechanism for superantigen-dependent vascular injury. Brogan PA; Shah V; Klein N; Dillon MJ Arthritis Rheum; 2004 Feb; 50(2):589-97. PubMed ID: 14872503 [TBL] [Abstract][Full Text] [Related]
9. Major histocompatibility complex class II-associated peptides determine the binding of the superantigen toxic shock syndrome toxin-1. von Bonin A; Ehrlich S; Malcherek G; Fleischer B Eur J Immunol; 1995 Oct; 25(10):2894-8. PubMed ID: 7589089 [TBL] [Abstract][Full Text] [Related]
10. Staphylococcal toxin-induced T cell proliferation in atopic eczema correlates with increased use of superantigen-reactive Vbeta-chains in cutaneous lymphocyte-associated antigen (CLA)-positive lymphocytes. Davison S; Allen M; Vaughan R; Barker J Clin Exp Immunol; 2000 Aug; 121(2):181-6. PubMed ID: 10931129 [TBL] [Abstract][Full Text] [Related]
11. Protection against lethal toxic shock by targeted disruption of the CD28 gene. Saha B; Harlan DM; Lee KP; June CH; Abe R J Exp Med; 1996 Jun; 183(6):2675-80. PubMed ID: 8676089 [TBL] [Abstract][Full Text] [Related]
12. Recombinant expression and neutralizing activity of an MHC class II binding epitope of toxic shock syndrome toxin-1. Rubinchik E; Chow AW Vaccine; 2000 Apr; 18(21):2312-20. PubMed ID: 10717352 [TBL] [Abstract][Full Text] [Related]
13. A quantitative real time PCR method to analyze T cell receptor Vbeta subgroup expansion by staphylococcal superantigens. Seo KS; Park JY; Terman DS; Bohach GA J Transl Med; 2010 Jan; 8():2. PubMed ID: 20070903 [TBL] [Abstract][Full Text] [Related]
14. Carboxy-terminal residues of major histocompatibility complex class II-associated peptides control the presentation of the bacterial superantigen toxic shock syndrome toxin-1 to T cells. Wen R; Broussard DR; Surman S; Hogg TL; Blackman MA; Woodland DL Eur J Immunol; 1997 Mar; 27(3):772-81. PubMed ID: 9079821 [TBL] [Abstract][Full Text] [Related]
15. Human scFvs That Counteract Bioactivities of Staphylococcus aureus TSST-1. Rukkawattanakul T; Sookrung N; Seesuay W; Onlamoon N; Diraphat P; Chaicumpa W; Indrawattana N Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28218671 [TBL] [Abstract][Full Text] [Related]
16. Endogenous superantigens shape response to exogenous superantigens. Rajagopalan G; Singh M; Sen MM; Murali NS; Nath KA; David CS Clin Diagn Lab Immunol; 2005 Sep; 12(9):1119-22. PubMed ID: 16148182 [TBL] [Abstract][Full Text] [Related]
17. Accelerated induction of experimental allergic encephalomyelitis in PL/J mice by a non-V beta 8-specific superantigen. Soos JM; Hobeika AC; Butfiloski EJ; Schiffenbauer J; Johnson HM Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6082-6. PubMed ID: 7541140 [TBL] [Abstract][Full Text] [Related]
18. Immune response to staphylococcal superantigens. Krakauer T Immunol Res; 1999; 20(2):163-73. PubMed ID: 10580640 [TBL] [Abstract][Full Text] [Related]
19. Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1. Acharya KR; Passalacqua EF; Jones EY; Harlos K; Stuart DI; Brehm RD; Tranter HS Nature; 1994 Jan; 367(6458):94-7. PubMed ID: 8107781 [TBL] [Abstract][Full Text] [Related]
20. The T cell receptor beta-chain second complementarity determining region loop (CDR2beta governs T cell activation and Vbeta specificity by bacterial superantigens. Nur-ur Rahman AK; Bonsor DA; Herfst CA; Pollard F; Peirce M; Wyatt AW; Kasper KJ; Madrenas J; Sundberg EJ; McCormick JK J Biol Chem; 2011 Feb; 286(6):4871-81. PubMed ID: 21127057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]