These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 9747572)
1. Accuracy of single-dipole inverse solution when localising ventricular pre-excitation sites: simulation study. Hren R; Stroink G; Horácek BM Med Biol Eng Comput; 1998 May; 36(3):323-9. PubMed ID: 9747572 [TBL] [Abstract][Full Text] [Related]
2. Value of epicardial potential maps in localizing pre-excitation sites for radiofrequency ablation. A simulation study. Hren R Phys Med Biol; 1998 Jun; 43(6):1449-68. PubMed ID: 9651017 [TBL] [Abstract][Full Text] [Related]
3. Spatial resolution of body surface potential maps and magnetic field maps: a simulation study applied to the identification of ventricular pre-excitation sites. Hren R; Stroink G; Horácek BM Med Biol Eng Comput; 1998 Mar; 36(2):145-57. PubMed ID: 9684453 [TBL] [Abstract][Full Text] [Related]
4. Value and limitations of an inverse solution for two equivalent dipoles in localising dual accessory pathways. Jazbinsek V; Hren R; Stroink G; Horácek BM; Trontelj Z Med Biol Eng Comput; 2003 Mar; 41(2):133-40. PubMed ID: 12691432 [TBL] [Abstract][Full Text] [Related]
5. Determination of the site of the accessory pathway in WPW syndrome by an electrocardiographic inverse solution. Tsunakawa H; Nishiyama G; Kusahana Y; Harumi K Jpn Heart J; 1990 Nov; 31(6):777-87. PubMed ID: 2084275 [TBL] [Abstract][Full Text] [Related]
6. Biomagnetic localization of electrical current sources in the human heart with realistic volume conductors using the single-current-dipole model. Bruder H; Killmann R; Moshage W; Weismüller P; Achenbach S; Bömmel F Phys Med Biol; 1994 Apr; 39(4):655-68. PubMed ID: 15552076 [TBL] [Abstract][Full Text] [Related]
7. Assessment of spatial resolution of pace mapping when using body surface potentials. Hren R; Punske BB; Stroink G Med Biol Eng Comput; 1999 Jul; 37(4):477-81. PubMed ID: 10696705 [TBL] [Abstract][Full Text] [Related]
8. Noninvasive reconstruction of three-dimensional ventricular activation sequence from the inverse solution of distributed equivalent current density. Liu Z; Liu C; He B IEEE Trans Med Imaging; 2006 Oct; 25(10):1307-18. PubMed ID: 17024834 [TBL] [Abstract][Full Text] [Related]
9. Electrocardiographic imaging: I. Effect of torso inhomogeneities on body surface electrocardiographic potentials. Ramanathan C; Rudy Y J Cardiovasc Electrophysiol; 2001 Feb; 12(2):229-40. PubMed ID: 11232624 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of a single equivalent moving dipole model in a realistic anatomic geometry torso model. Fukuoka Y; Armoundas AA; Oostendorp TF; Cohen RJ Comput Cardiol; 2000; 27():439-42. PubMed ID: 14632014 [TBL] [Abstract][Full Text] [Related]
11. Epicardial potentials computed from the body surface potential map using inverse electrocardiography and an individualised torso model improve sensitivity for acute myocardial infarction diagnosis. Daly MJ; Finlay DD; Guldenring D; Bond RR; McCann AJ; Scott PJ; Adgey JA; Harbinson MT Eur Heart J Acute Cardiovasc Care; 2017 Dec; 6(8):728-735. PubMed ID: 27669728 [TBL] [Abstract][Full Text] [Related]
12. Model study of influence of extracardial factors on the inverse localization of preexcitation sites. Turzová M; Tysler M; Svehlíková J; Tinová M Bratisl Lek Listy; 1996 Sep; 97(9):562-6. PubMed ID: 8948154 [TBL] [Abstract][Full Text] [Related]
13. Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model. Fukuoka Y; Oostendorp TF; Sherman DA; Armoundas AA IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2436-44. PubMed ID: 17153200 [TBL] [Abstract][Full Text] [Related]
14. Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones. Ramanathan C; Rudy Y J Cardiovasc Electrophysiol; 2001 Feb; 12(2):241-52. PubMed ID: 11232625 [TBL] [Abstract][Full Text] [Related]
15. Comparison between electrocardiographic and magnetocardiographic inverse solutions using the boundary element method. Hren R; Zhang X; Stroink G Med Biol Eng Comput; 1996 Mar; 34(2):110-4. PubMed ID: 8733546 [TBL] [Abstract][Full Text] [Related]
16. Noninvasive finding of local repolarization changes in the heart using dipole models and simplified torso geometry. Tysler M; Svehlikova J J Electrocardiol; 2013; 46(4):284-8. PubMed ID: 23628317 [TBL] [Abstract][Full Text] [Related]
17. Noninvasive three-dimensional activation time imaging of ventricular excitation by means of a heart-excitation model. He B; Li G; Zhang X Phys Med Biol; 2002 Nov; 47(22):4063-78. PubMed ID: 12476982 [TBL] [Abstract][Full Text] [Related]
18. The effect of measurement conditions on MCG inverse solutions. Tan GA; Brauer F; Stroink G; Purcell CJ IEEE Trans Biomed Eng; 1992 Sep; 39(9):921-7. PubMed ID: 1473820 [TBL] [Abstract][Full Text] [Related]
19. Non-invasive magnetocardiographic localization of ventricular pre-excitation in the Wolff-Parkinson-White syndrome using a realistic torso model. Nenonen J; Mäkijärvi M; Toivonen L; Forsman K; Leiniö M; Montonen J; Järvinen A; Keto P; Hekali P; Katila T Eur Heart J; 1993 Feb; 14(2):168-74. PubMed ID: 8449192 [TBL] [Abstract][Full Text] [Related]
20. The use of body surface potential map for identifying sites of accessory pathway in patients with Wolff-Parkinson-White syndrome. Tseng YZ; Hsu KL; Chiang FT; Lo HM; Tseng CD; Lin JL Jpn Heart J; 1998 Jul; 39(4):445-55. PubMed ID: 9810295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]