BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9747791)

  • 1. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology.
    Qin YX; Rubin CT; McLeod KJ
    J Orthop Res; 1998 Jul; 16(4):482-9. PubMed ID: 9747791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach to quantifying bone overloading and hypertrophy with applications to multiple experimental studies.
    Chen JC; Beaupré GS; Carter DR
    Bone; 2010 Feb; 46(2):322-9. PubMed ID: 19800044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain.
    Rubin CT; McLeod KJ
    Clin Orthop Relat Res; 1994 Jan; (298):165-74. PubMed ID: 8118971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading.
    Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site specific bone adaptation response to mechanical loading.
    Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP
    J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location.
    Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The establishment of a new mechanobiology model of bone and functional adaptation studies in vivo].
    Chen XY; Zhang XZ; Zhang YL; Zhang CQ; Zhao HB; Zhang YH; Mao Y
    Zhonghua Yi Xue Za Zhi; 2007 May; 87(17):1160-4. PubMed ID: 17686232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone.
    Rubin CT; Lanyon LE
    J Orthop Res; 1987; 5(2):300-10. PubMed ID: 3572599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased expression of matrix metalloproteinase-1 in osteocytes precedes bone resorption as stimulated by disuse: evidence for autoregulation of the cell's mechanical environment?
    Rubin C; Sun YQ; Hadjiargyrou M; McLeod K
    J Orthop Res; 1999 May; 17(3):354-61. PubMed ID: 10376723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of bony ingrowth to the distribution of stress and strain parameters surrounding a porous-coated implant.
    Qin YX; McLeod KJ; Guilak F; Chiang FP; Rubin CT
    J Orthop Res; 1996 Nov; 14(6):862-70. PubMed ID: 8982127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5-10 Hz.
    Warden SJ; Turner CH
    Bone; 2004 Feb; 34(2):261-70. PubMed ID: 14962804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of beta-adrenergic signaling does not influence the bone mechano-adaptive response in mice.
    Marenzana M; De Souza RL; Chenu C
    Bone; 2007 Aug; 41(2):206-15. PubMed ID: 17543595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density.
    Hsieh YF; Silva MJ
    J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a bone's in vivo 24-hour loading history for physical exercise compared with background loading.
    Konieczynski DD; Truty MJ; Biewener AA
    J Orthop Res; 1998 Jan; 16(1):29-37. PubMed ID: 9565070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture.
    Skerry TM
    J Musculoskelet Neuronal Interact; 2006; 6(2):122-7. PubMed ID: 16849820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniformity of resorptive bone loss induced by disuse.
    Gross TS; Rubin CT
    J Orthop Res; 1995 Sep; 13(5):708-14. PubMed ID: 7472749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton.
    Judex S; Gross TS; Zernicke RF
    J Bone Miner Res; 1997 Oct; 12(10):1737-45. PubMed ID: 9333136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of the bone-tissue remodeling response to axial and torsional loading in the turkey ulna.
    Rubin C; Gross T; Qin YX; Fritton S; Guilak F; McLeod K
    J Bone Joint Surg Am; 1996 Oct; 78(10):1523-33. PubMed ID: 8876580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.