BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 9747793)

  • 1. Changes in cell, matrix compartment, and fibrillar collagen volumes between growth-plate zones.
    Noonan KJ; Hunziker EB; Nessler J; Buckwalter JA
    J Orthop Res; 1998 Jul; 16(4):500-8. PubMed ID: 9747793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in matrix vesicle concentration among growth plate zones.
    Buckwalter JA; Mower D; Schaeffer J
    J Orthop Res; 1987; 5(2):157-63. PubMed ID: 3572586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrins and extracellular matrix proteins in the human childhood and adolescent growth plate.
    Häusler G; Helmreich M; Marlovits S; Egerbacher M
    Calcif Tissue Int; 2002 Sep; 71(3):212-8. PubMed ID: 12154393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphometric analysis of chondrocyte hypertrophy.
    Buckwalter JA; Mower D; Ungar R; Schaeffer J; Ginsberg B
    J Bone Joint Surg Am; 1986 Feb; 68(2):243-55. PubMed ID: 3944163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization.
    Amini S; Mortazavi F; Sun J; Levesque M; Hoemann CD; Villemure I
    Biomech Model Mechanobiol; 2013 Jan; 12(1):67-78. PubMed ID: 22446833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix compartments in the growth plate of the proximal tibia of rats.
    Eggli PS; Herrmann W; Hunziker EB; Schenk RK
    Anat Rec; 1985 Mar; 211(3):246-57. PubMed ID: 3993978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates.
    Breur GJ; VanEnkevort BA; Farnum CE; Wilsman NJ
    J Orthop Res; 1991 May; 9(3):348-59. PubMed ID: 2010838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue and cellular morphological changes in growth plate explants under compression.
    Amini S; Veilleux D; Villemure I
    J Biomech; 2010 Sep; 43(13):2582-8. PubMed ID: 20627250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarray analysis of proliferative and hypertrophic growth plate zones identifies differentiation markers and signal pathways.
    Wang Y; Middleton F; Horton JA; Reichel L; Farnum CE; Damron TA
    Bone; 2004 Dec; 35(6):1273-93. PubMed ID: 15589209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous nanostructural and nanoelastic properties of pericellular and interterritorial matrices of chondrocytes by atomic force microscopy.
    Allen DM; Mao JJ
    J Struct Biol; 2004 Mar; 145(3):196-204. PubMed ID: 14960370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological and functional interrelationships of articular cartilage matrices.
    Poole CA; Flint MH; Beaumont BW
    J Anat; 1984 Jan; 138 ( Pt 1)(Pt 1):113-38. PubMed ID: 6706831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereological and serial section analysis of chondrocytic enlargement in the proximal tibial growth plate of the rat.
    Breur GJ; Turgai J; Vanenkevort BA; Farnum CE; Wilsman NJ
    Anat Rec; 1994 Jul; 239(3):255-68. PubMed ID: 7943757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ localization of lectin-binding glycoconjugates in the matrix of growth-plate cartilage.
    Farnum CE; Wilsman NJ
    Am J Anat; 1986 May; 176(1):65-82. PubMed ID: 3728344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The osmotic sensitivity of rat growth plate chondrocytes in situ; clarifying the mechanisms of hypertrophy.
    Bush PG; Parisinos CA; Hall AC
    J Cell Physiol; 2008 Mar; 214(3):621-9. PubMed ID: 17786946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An immunohistochemical and ultrastructural study of the pericellular matrix of uneroded hypertrophic chondrocytes in the mandibular condyle of aged c-src-deficient mice.
    Shibata S; Baba O; Oda T; Yokohama-Tamaki T; Qin C; Butler WT; Sakakura Y; Takano Y
    Arch Oral Biol; 2008 Mar; 53(3):220-30. PubMed ID: 18068147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen metabolism is markedly altered in the hypertrophic cartilage of growth plates from rats with growth impairment secondary to chronic renal failure.
    Alvarez J; Balbín M; Fernández M; López JM
    J Bone Miner Res; 2001 Mar; 16(3):511-24. PubMed ID: 11277269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in perlecan during chondrocyte differentiation in the fetal bovine rib growth plate.
    West L; Govindraj P; Koob TJ; Hassell JR
    J Orthop Res; 2006 Jun; 24(6):1317-26. PubMed ID: 16705694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional in situ zonal morphology of viable growth plate chondrocytes: a confocal microscopy study.
    Amini S; Veilleux D; Villemure I
    J Orthop Res; 2011 May; 29(5):710-7. PubMed ID: 21437950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix metalloproteinases and aggrecanases cleave aggrecan in different zones of normal cartilage but colocalize in the development of osteoarthritic lesions in STR/ort mice.
    Chambers MG; Cox L; Chong L; Suri N; Cover P; Bayliss MT; Mason RM
    Arthritis Rheum; 2001 Jun; 44(6):1455-65. PubMed ID: 11407708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.