These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 9747793)

  • 1. Changes in cell, matrix compartment, and fibrillar collagen volumes between growth-plate zones.
    Noonan KJ; Hunziker EB; Nessler J; Buckwalter JA
    J Orthop Res; 1998 Jul; 16(4):500-8. PubMed ID: 9747793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in matrix vesicle concentration among growth plate zones.
    Buckwalter JA; Mower D; Schaeffer J
    J Orthop Res; 1987; 5(2):157-63. PubMed ID: 3572586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrins and extracellular matrix proteins in the human childhood and adolescent growth plate.
    Häusler G; Helmreich M; Marlovits S; Egerbacher M
    Calcif Tissue Int; 2002 Sep; 71(3):212-8. PubMed ID: 12154393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphometric analysis of chondrocyte hypertrophy.
    Buckwalter JA; Mower D; Ungar R; Schaeffer J; Ginsberg B
    J Bone Joint Surg Am; 1986 Feb; 68(2):243-55. PubMed ID: 3944163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization.
    Amini S; Mortazavi F; Sun J; Levesque M; Hoemann CD; Villemure I
    Biomech Model Mechanobiol; 2013 Jan; 12(1):67-78. PubMed ID: 22446833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix compartments in the growth plate of the proximal tibia of rats.
    Eggli PS; Herrmann W; Hunziker EB; Schenk RK
    Anat Rec; 1985 Mar; 211(3):246-57. PubMed ID: 3993978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates.
    Breur GJ; VanEnkevort BA; Farnum CE; Wilsman NJ
    J Orthop Res; 1991 May; 9(3):348-59. PubMed ID: 2010838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue and cellular morphological changes in growth plate explants under compression.
    Amini S; Veilleux D; Villemure I
    J Biomech; 2010 Sep; 43(13):2582-8. PubMed ID: 20627250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microarray analysis of proliferative and hypertrophic growth plate zones identifies differentiation markers and signal pathways.
    Wang Y; Middleton F; Horton JA; Reichel L; Farnum CE; Damron TA
    Bone; 2004 Dec; 35(6):1273-93. PubMed ID: 15589209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous nanostructural and nanoelastic properties of pericellular and interterritorial matrices of chondrocytes by atomic force microscopy.
    Allen DM; Mao JJ
    J Struct Biol; 2004 Mar; 145(3):196-204. PubMed ID: 14960370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological and functional interrelationships of articular cartilage matrices.
    Poole CA; Flint MH; Beaumont BW
    J Anat; 1984 Jan; 138 ( Pt 1)(Pt 1):113-38. PubMed ID: 6706831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereological and serial section analysis of chondrocytic enlargement in the proximal tibial growth plate of the rat.
    Breur GJ; Turgai J; Vanenkevort BA; Farnum CE; Wilsman NJ
    Anat Rec; 1994 Jul; 239(3):255-68. PubMed ID: 7943757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ localization of lectin-binding glycoconjugates in the matrix of growth-plate cartilage.
    Farnum CE; Wilsman NJ
    Am J Anat; 1986 May; 176(1):65-82. PubMed ID: 3728344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The osmotic sensitivity of rat growth plate chondrocytes in situ; clarifying the mechanisms of hypertrophy.
    Bush PG; Parisinos CA; Hall AC
    J Cell Physiol; 2008 Mar; 214(3):621-9. PubMed ID: 17786946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An immunohistochemical and ultrastructural study of the pericellular matrix of uneroded hypertrophic chondrocytes in the mandibular condyle of aged c-src-deficient mice.
    Shibata S; Baba O; Oda T; Yokohama-Tamaki T; Qin C; Butler WT; Sakakura Y; Takano Y
    Arch Oral Biol; 2008 Mar; 53(3):220-30. PubMed ID: 18068147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics.
    Korhonen RK; Herzog W
    J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen metabolism is markedly altered in the hypertrophic cartilage of growth plates from rats with growth impairment secondary to chronic renal failure.
    Alvarez J; Balbín M; Fernández M; López JM
    J Bone Miner Res; 2001 Mar; 16(3):511-24. PubMed ID: 11277269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in perlecan during chondrocyte differentiation in the fetal bovine rib growth plate.
    West L; Govindraj P; Koob TJ; Hassell JR
    J Orthop Res; 2006 Jun; 24(6):1317-26. PubMed ID: 16705694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional in situ zonal morphology of viable growth plate chondrocytes: a confocal microscopy study.
    Amini S; Veilleux D; Villemure I
    J Orthop Res; 2011 May; 29(5):710-7. PubMed ID: 21437950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix metalloproteinases and aggrecanases cleave aggrecan in different zones of normal cartilage but colocalize in the development of osteoarthritic lesions in STR/ort mice.
    Chambers MG; Cox L; Chong L; Suri N; Cover P; Bayliss MT; Mason RM
    Arthritis Rheum; 2001 Jun; 44(6):1455-65. PubMed ID: 11407708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.