BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9747980)

  • 1. Uptake of an antiplasmodial protease inhibitor into Plasmodium falciparum-infected human erythrocytes via a parasite-induced pathway.
    Saliba KJ; Kirk K
    Mol Biochem Parasitol; 1998 Aug; 94(2):297-301. PubMed ID: 9747980
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum.
    Meierjohann S; Walter RD; Müller S
    Biochem J; 2002 Dec; 368(Pt 3):761-8. PubMed ID: 12225291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dipyridamole on Plasmodium falciparum-infected erythrocytes.
    Akaki M; Nakano Y; Ito Y; Nagayasu E; Aikawa M
    Parasitol Res; 2002 Dec; 88(12):1044-50. PubMed ID: 12444453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroquine resistance is not associated with drug metabolism in Plasmodium falciparum.
    Berger BJ; Martiney J; Slater AF; Fairlamb AH; Cerami A
    J Parasitol; 1995 Dec; 81(6):1004-8. PubMed ID: 8544038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The treatment of Plasmodium falciparum-infected erythrocytes with chloroquine leads to accumulation of ferriprotoporphyrin IX bound to particular parasite proteins and to the inhibition of the parasite's 6-phosphogluconate dehydrogenase.
    Famin O; Ginsburg H
    Parasite; 2003 Mar; 10(1):39-50. PubMed ID: 12669348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum.
    Navale R; Atul ; Allanki AD; Sijwali PS
    PLoS One; 2014; 9(11):e113220. PubMed ID: 25426852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum.
    Stocks PA; Raynes KJ; Bray PG; Park BK; O'Neill PM; Ward SA
    J Med Chem; 2002 Nov; 45(23):4975-83. PubMed ID: 12408708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of 4-aminoquinoline-containing antimalarial drugs on hemoglobin digestion in Plasmodium falciparum-infected erythrocytes.
    Famin O; Ginsburg H
    Biochem Pharmacol; 2002 Feb; 63(3):393-8. PubMed ID: 11853690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of [3H] dihydroartemisinine by erythrocytes infected with Plasmodium falciparum in vitro.
    Gu HM; Warhurst DC; Peters W
    Trans R Soc Trop Med Hyg; 1984; 78(2):265-70. PubMed ID: 6380017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin and glutathione system of malaria parasite Plasmodium falciparum.
    Müller S; Gilberger TW; Krnajski Z; Lüersen K; Meierjohann S; Walter RD
    Protoplasma; 2001; 217(1-3):43-9. PubMed ID: 11732337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does chloroquine really act through oxidative stress?
    Monti D; Basilico N; Parapini S; Pasini E; Olliaro P; Taramelli D
    FEBS Lett; 2002 Jul; 522(1-3):3-5. PubMed ID: 12095608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of kinetic data on the influx and efflux of chloroquine by erythrocytes infected with Plasmodium falciparum. Evidence for a drug-importer in chloroquine-sensitive strains.
    Ferrari V; Cutler DJ
    Biochem Pharmacol; 1991 Dec; 42 Suppl():S167-79. PubMed ID: 1768274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inoculum effect with chloroquine and Plasmodium falciparum.
    Gluzman IY; Schlesinger PH; Krogstad DJ
    Antimicrob Agents Chemother; 1987 Jan; 31(1):32-6. PubMed ID: 3551825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of substituted phenalenone analogues as antiplasmodial agents.
    Gutiérrez D; Flores N; Abad-Grillo T; McNaughton-Smith G
    Exp Parasitol; 2013 Oct; 135(2):456-8. PubMed ID: 23985373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 2-amino quinoline, 5-(3-(2-(7-chloroquinolin-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid, interacts with PfMDR1 and inhibits its drug transport in Plasmodium falciparum.
    Edaye S; Reiling SJ; Leimanis ML; Wunderlich J; Rohrbach P; Georges E
    Mol Biochem Parasitol; 2014 Jun; 195(1):34-42. PubMed ID: 24914817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of [3H]chloroquine by drug-sensitive and -resistant strains of the human malaria parasite Plasmodium falciparum.
    Geary TG; Jensen JB; Ginsburg H
    Biochem Pharmacol; 1986 Nov; 35(21):3805-12. PubMed ID: 3535803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pH of the Plasmodium falciparum digestive vacuole: holy grail or dead-end trail?
    Spiller DG; Bray PG; Hughes RH; Ward SA; White MR
    Trends Parasitol; 2002 Oct; 18(10):441-4. PubMed ID: 12377594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum.
    Saliba KJ; Horner HA; Kirk K
    J Biol Chem; 1998 Apr; 273(17):10190-5. PubMed ID: 9553068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malagashanine potentiates chloroquine antimalarial activity in drug resistant Plasmodium malaria by modifying both its efflux and influx.
    Ramanitrahasimbola D; Rasoanaivo P; Ratsimamanga S; Vial H
    Mol Biochem Parasitol; 2006 Mar; 146(1):58-67. PubMed ID: 16313982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the molecular mechanism of chloroquine's antimalarial action.
    Sullivan DJ; Gluzman IY; Russell DG; Goldberg DE
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11865-70. PubMed ID: 8876229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.