BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9747997)

  • 1. Conventional versus microchip controlled pneumatic swing phase control for trans-femoral amputees: user's verdict.
    Datta D; Howitt J
    Prosthet Orthot Int; 1998 Aug; 22(2):129-35. PubMed ID: 9747997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control.
    Datta D; Heller B; Howitt J
    Clin Rehabil; 2005 Jun; 19(4):398-403. PubMed ID: 15929508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Successful prosthetic fitting of elderly trans-femoral amputees with Intelligent Prosthesis (IP): a clinical pilot study.
    Chin T; Maeda Y; Sawamura S; Oyabu H; Nagakura Y; Takase I; Machida K
    Prosthet Orthot Int; 2007 Sep; 31(3):271-6. PubMed ID: 17979012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy cost during ambulation in transfemoral amputees: a knee joint with a mechanical swing phase control vs a knee joint with a pneumatic swing phase control.
    Boonstra AM; Schrama J; Fidler V; Eisma WH
    Scand J Rehabil Med; 1995 Jun; 27(2):77-81. PubMed ID: 7569824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy cost of walking: comparison of "intelligent prosthesis" with conventional mechanism.
    Buckley JG; Spence WD; Solomonidis SE
    Arch Phys Med Rehabil; 1997 Mar; 78(3):330-3. PubMed ID: 9084360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.
    Abdulhasan ZM; Scally AJ; Buckley JG
    Clin Biomech (Bristol, Avon); 2018 Aug; 57():35-41. PubMed ID: 29908391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.
    Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG
    Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study.
    Hasenoehrl T; Schmalz T; Windhager R; Domayer S; Dana S; Ambrozy C; Palma S; Crevenna R
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):157-165. PubMed ID: 28399722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pilot study comparing the cognitive demand of walking for transfemoral amputees using the Intelligent Prosthesis with that using conventionally damped knees.
    Heller BW; Datta D; Howitt J
    Clin Rehabil; 2000 Oct; 14(5):518-22. PubMed ID: 11043877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different microprocessor controlled knee joints on the energy consumption during walking in trans-femoral amputees: intelligent knee prosthesis (IP) versus C-leg.
    Chin T; Machida K; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Nakagawa A
    Prosthet Orthot Int; 2006 Apr; 30(1):73-80. PubMed ID: 16739783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of an Intelligent Prosthesis (IP) on the walking ability of young transfemoral amputees: comparison of IP users with able-bodied people.
    Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Machida K; Nakagawa A
    Am J Phys Med Rehabil; 2003 Jun; 82(6):447-51. PubMed ID: 12820787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint].
    Stinus H
    Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subjective benefits of energy storing prostheses.
    Alaranta H; Lempinen VM; Haavisto E; Pohjolainen T; Hurri H
    Prosthet Orthot Int; 1994 Aug; 18(2):92-7. PubMed ID: 7991366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy expenditure during walking in amputees after disarticulation of the hip. A microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee.
    Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Nakagawa A
    J Bone Joint Surg Br; 2005 Jan; 87(1):117-9. PubMed ID: 15686251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the gait performance of non-fluid-based swing-phase control mechanisms in transfemoral prostheses.
    Furse A; Cleghorn W; Andrysek J
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21592917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The influence of the C-leg knee-shin system from the Otto Bock Company in the care of above-knee amputees. A clinical-biomechanical study to define indications].
    Wetz HH; Hafkemeyer U; Drerup B
    Orthopade; 2005 Apr; 34(4):298, 300-314, 316-9. PubMed ID: 15812621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.