BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 9748219)

  • 1. Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine.
    Dierks T; Miech C; Hummerjohann J; Schmidt B; Kertesz MA; von Figura K
    J Biol Chem; 1998 Oct; 273(40):25560-4. PubMed ID: 9748219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine.
    Miech C; Dierks T; Selmer T; von Figura K; Schmidt B
    J Biol Chem; 1998 Feb; 273(9):4835-7. PubMed ID: 9478923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posttranslational modification of serine to formylglycine in bacterial sulfatases. Recognition of the modification motif by the iron-sulfur protein AtsB.
    Marquordt C; Fang Q; Will E; Peng J; von Figura K; Dierks T
    J Biol Chem; 2003 Jan; 278(4):2212-8. PubMed ID: 12419807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase.
    Szameit C; Miech C; Balleininger M; Schmidt B; von Figura K; Dierks T
    J Biol Chem; 1999 May; 274(22):15375-81. PubMed ID: 10336424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residues critical for formylglycine formation and/or catalytic activity of arylsulfatase A.
    Knaust A; Schmidt B; Dierks T; von Bülow R; von Figura K
    Biochemistry; 1998 Oct; 37(40):13941-6. PubMed ID: 9760228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases.
    Dierks T; Lecca MR; Schlotterhose P; Schmidt B; von Figura K
    EMBO J; 1999 Apr; 18(8):2084-91. PubMed ID: 10205163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum.
    Dierks T; Lecca MR; Schmidt B; von Figura K
    FEBS Lett; 1998 Feb; 423(1):61-5. PubMed ID: 9506842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1.3 A structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism of sulfate ester cleavage in the sulfatase family.
    Boltes I; Czapinska H; Kahnert A; von Bülow R; Dierks T; Schmidt B; von Figura K; Kertesz MA; Usón I
    Structure; 2001 Jun; 9(6):483-91. PubMed ID: 11435113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of posttranslational formylglycine formation by luminal components of the endoplasmic reticulum.
    Fey J; Balleininger M; Borissenko LV; Schmidt B; von Figura K; Dierks T
    J Biol Chem; 2001 Dec; 276(50):47021-8. PubMed ID: 11600503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes.
    Landgrebe J; Dierks T; Schmidt B; von Figura K
    Gene; 2003 Oct; 316():47-56. PubMed ID: 14563551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of formylglycine in sulfatases by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Peng J; Schmidt B; von Figura K; Dierks T
    J Mass Spectrom; 2003 Jan; 38(1):80-6. PubMed ID: 12526009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine.
    Recksiek M; Selmer T; Dierks T; Schmidt B; von Figura K
    J Biol Chem; 1998 Mar; 273(11):6096-103. PubMed ID: 9497327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
    Dierks T; Schmidt B; von Figura K
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11963-8. PubMed ID: 9342345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression, localization, structural, and functional characterization of pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
    Mariappan M; Preusser-Kunze A; Balleininger M; Eiselt N; Schmidt B; Gande SL; Wenzel D; Dierks T; von Figura K
    J Biol Chem; 2005 Apr; 280(15):15173-9. PubMed ID: 15708861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolutionary conservation of a novel protein modification, the conversion of cysteine to serinesemialdehyde in arylsulfatase from Volvox carteri.
    Selmer T; Hallmann A; Schmidt B; Sumper M; von Figura K
    Eur J Biochem; 1996 Jun; 238(2):341-5. PubMed ID: 8681943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First evidences for a third sulfatase maturation system in prokaryotes from E. coli aslB and ydeM deletion mutants.
    Benjdia A; Dehò G; Rabot S; Berteau O
    FEBS Lett; 2007 Mar; 581(5):1009-14. PubMed ID: 17303125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational formylglycine modification of bacterial sulfatases by the radical S-adenosylmethionine protein AtsB.
    Fang Q; Peng J; Dierks T
    J Biol Chem; 2004 Apr; 279(15):14570-8. PubMed ID: 14749327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications.
    Appel MJ; Bertozzi CR
    ACS Chem Biol; 2015 Jan; 10(1):72-84. PubMed ID: 25514000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structures of sulfatases.
    Ghosh D
    Methods Enzymol; 2005; 400():273-93. PubMed ID: 16399355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function and structure of a prokaryotic formylglycine-generating enzyme.
    Carlson BL; Ballister ER; Skordalakes E; King DS; Breidenbach MA; Gilmore SA; Berger JM; Bertozzi CR
    J Biol Chem; 2008 Jul; 283(29):20117-25. PubMed ID: 18390551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.