BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9748243)

  • 1. Superoxide dependence of the toxicity of short chain sugars.
    Benov L; Fridovich I
    J Biol Chem; 1998 Oct; 273(40):25741-4. PubMed ID: 9748243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A superoxide dismutase mimic protects sodA sodB Escherichia coli against aerobic heating and stationary-phase death.
    Benov L; Fridovich I
    Arch Biochem Biophys; 1995 Sep; 322(1):291-4. PubMed ID: 7574689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of alpha,beta -dicarbonyl compounds in the toxicity of short chain sugars.
    Okado-Matsumoto A; Fridovich I
    J Biol Chem; 2000 Nov; 275(45):34853-7. PubMed ID: 10931845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide-dependence of the short chain sugars-induced mutagenesis.
    Benov L; Beema AF
    Free Radic Biol Med; 2003 Feb; 34(4):429-33. PubMed ID: 12566068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional significance of the Cu,ZnSOD in Escherichia coli.
    Benov L; Fridovich I
    Arch Biochem Biophys; 1996 Mar; 327(2):249-53. PubMed ID: 8619610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triosephosphates are toxic to superoxide dismutase-deficient Escherichia coli.
    Benov L; Beema AF; Sequeira F
    Biochim Biophys Acta; 2003 Jul; 1622(2):128-32. PubMed ID: 12880950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism.
    Hassett DJ; Schweizer HP; Ohman DE
    J Bacteriol; 1995 Nov; 177(22):6330-7. PubMed ID: 7592406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of the soxRS regulon of Escherichia coli by glycolaldehyde.
    Benov L; Fridovich I
    Arch Biochem Biophys; 2002 Nov; 407(1):45-8. PubMed ID: 12392714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of anaerobic superoxide dismutase synthesis in facilitating outgrowth of Escherichia coli upon entry into an aerobic habitat.
    Kargalioglu Y; Imlay JA
    J Bacteriol; 1994 Dec; 176(24):7653-8. PubMed ID: 8002590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cationic manganic porphyrin inhibits uptake of paraquat by Escherichia coli.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 1995 Aug; 321(1):271-5. PubMed ID: 7639531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory roles of Fnr, Fur, and Arc in expression of manganese-containing superoxide dismutase in Escherichia coli.
    Hassan HM; Sun HC
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3217-21. PubMed ID: 1565612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of the Pseudomonas aeruginosa sodA and sodB genes encoding manganese- and iron-cofactored superoxide dismutase: demonstration of increased manganese superoxide dismutase activity in alginate-producing bacteria.
    Hassett DJ; Woodruff WA; Wozniak DJ; Vasil ML; Cohen MS; Ohman DE
    J Bacteriol; 1993 Dec; 175(23):7658-65. PubMed ID: 8244935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide dismutase protects against aerobic heat shock in Escherichia coli.
    Benov L; Fridovich I
    J Bacteriol; 1995 Jun; 177(11):3344-6. PubMed ID: 7768839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of Mn-salophen complex with superoxide scavenging activity.
    Liu ZX; Robinson GB; Gregory EM
    Arch Biochem Biophys; 1994 Nov; 315(1):74-81. PubMed ID: 7979408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon tetrachloride toxicity on Escherichia coli exacerbated by superoxide.
    Yamamoto H; Nagano T; Hirobe M
    J Biol Chem; 1988 Sep; 263(25):12224-7. PubMed ID: 2842324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenesis in Escherichia coli K-12 mutants defective in superoxide dismutase or catalase.
    Prieto-Alamo MJ; Abril N; Pueyo C
    Carcinogenesis; 1993 Feb; 14(2):237-44. PubMed ID: 8382113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen Enhancement of bactericidal activity of rifamycin SV on Escherichia coli and aerobic oxidation of rifamycin SV to rifamycin S catalyzed by manganous ions: the role of superoxide.
    Kono Y
    J Biochem; 1982 Jan; 91(1):381-95. PubMed ID: 6279585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Only one of a wide assortment of manganese-containing SOD mimicking compounds rescues the slow aerobic growth phenotypes of both Escherichia coli and Saccharomyces cerevisiae strains lacking superoxide dismutase enzymes.
    Munroe W; Kingsley C; Durazo A; Gralla EB; Imlay JA; Srinivasan C; Valentine JS
    J Inorg Biochem; 2007 Nov; 101(11-12):1875-82. PubMed ID: 17723242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and expression analysis of the Rhodobacter capsulatus sodB gene, encoding an iron superoxide dismutase.
    Cortez N; Carrillo N; Pasternak C; Balzer A; Klug G
    J Bacteriol; 1998 Oct; 180(20):5413-20. PubMed ID: 9765573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity.
    Tseng HJ; Srikhanta Y; McEwan AG; Jennings MP
    Mol Microbiol; 2001 Jun; 40(5):1175-86. PubMed ID: 11401721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.