These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 9748245)
21. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli. Chen X; Xu J; Yang L; Yuan Z; Xiao S; Zhang Y; Liang C; He M; Guo Y J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1473-9. PubMed ID: 26350079 [TBL] [Abstract][Full Text] [Related]
22. Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Hohmann S; Cederberg H Eur J Biochem; 1990 Mar; 188(3):615-21. PubMed ID: 2185016 [TBL] [Abstract][Full Text] [Related]
23. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Vuralhan Z; Morais MA; Tai SL; Piper MD; Pronk JT Appl Environ Microbiol; 2003 Aug; 69(8):4534-41. PubMed ID: 12902239 [TBL] [Abstract][Full Text] [Related]
24. Pyruvate decarboxylase encoded by the PDC1 gene contributes, at least partially, to the decarboxylation of alpha-ketoisocaproate for isoamyl alcohol formation in Saccharomyces cerevisiae. Yoshimoto H; Fukushige T; Yonezawa T; Sakai Y; Okawa K; Iwamatsu A; Sone H; Tamai Y J Biosci Bioeng; 2001; 92(1):83-5. PubMed ID: 16233064 [TBL] [Abstract][Full Text] [Related]
25. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source. Espinosa Vidal E; de Morais MA; François JM; de Billerbeck GM Yeast; 2015 Jan; 32(1):47-56. PubMed ID: 25274068 [TBL] [Abstract][Full Text] [Related]
26. [Effect of YDL080C gene deletion on higher alcohols production in Saccharomyces cerevisiae haploids]. Hao X; Xiao D; Zhang C Wei Sheng Wu Xue Bao; 2010 Aug; 50(8):1030-5. PubMed ID: 20931870 [TBL] [Abstract][Full Text] [Related]
27. Proteome reallocation enables the selective de novo biosynthesis of non-linear, branched-chain acetate esters. Seo H; Giannone RJ; Yang YH; Trinh CT Metab Eng; 2022 Sep; 73():38-49. PubMed ID: 35561848 [TBL] [Abstract][Full Text] [Related]
28. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16. Lu J; Brigham CJ; Plassmeier JK; Sinskey AJ Appl Microbiol Biotechnol; 2015 Jan; 99(2):761-74. PubMed ID: 25081555 [TBL] [Abstract][Full Text] [Related]
30. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927 [TBL] [Abstract][Full Text] [Related]
31. Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae. Milne N; van Maris AJ; Pronk JT; Daran JM Biotechnol Biofuels; 2015; 8():204. PubMed ID: 26628917 [TBL] [Abstract][Full Text] [Related]
32. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Atsumi S; Li Z; Liao JC Appl Environ Microbiol; 2009 Oct; 75(19):6306-11. PubMed ID: 19684168 [TBL] [Abstract][Full Text] [Related]
33. Use of the valine biosynthetic pathway to convert glucose into isobutanol. Savrasova EA; Kivero AD; Shakulov RS; Stoynova NV J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1287-94. PubMed ID: 21161324 [TBL] [Abstract][Full Text] [Related]
34. Microbial synthesis of L-[15N]leucine L-[15N]isoleucine, and L-[3-13C]-and L-[3'-13C]isoleucines studied by nuclear magnetic resonance and gas chromatography-mass spectrometry. Kahana ZE; Gopher A; Dorsman M; Lapidot A Anal Biochem; 1988 Nov; 174(2):374-80. PubMed ID: 3149160 [TBL] [Abstract][Full Text] [Related]
35. Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Eden A; Van Nedervelde L; Drukker M; Benvenisty N; Debourg A Appl Microbiol Biotechnol; 2001 Apr; 55(3):296-300. PubMed ID: 11341309 [TBL] [Abstract][Full Text] [Related]
36. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae. Brat D; Boles E FEMS Yeast Res; 2013 Mar; 13(2):241-4. PubMed ID: 23279585 [TBL] [Abstract][Full Text] [Related]
37. Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene. Muller EH; Richards EJ; Norbeck J; Byrne KL; Karlsson KA; Pretorius GH; Meacock PA; Blomberg A; Hohmann S FEBS Lett; 1999 Apr; 449(2-3):245-50. PubMed ID: 10338141 [TBL] [Abstract][Full Text] [Related]
38. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. Brat D; Weber C; Lorenzen W; Bode HB; Boles E Biotechnol Biofuels; 2012 Sep; 5(1):65. PubMed ID: 22954227 [TBL] [Abstract][Full Text] [Related]
39. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Vuralhan Z; Luttik MA; Tai SL; Boer VM; Morais MA; Schipper D; Almering MJ; Kötter P; Dickinson JR; Daran JM; Pronk JT Appl Environ Microbiol; 2005 Jun; 71(6):3276-84. PubMed ID: 15933030 [TBL] [Abstract][Full Text] [Related]
40. Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Flikweert MT; Kuyper M; van Maris AJ; Kötter P; van Dijken JP; Pronk JT Biotechnol Bioeng; 1999; 66(1):42-50. PubMed ID: 10556793 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]