These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 9748312)
21. The influence of hydrogen bonds on the electronic structure of light-harvesting complexes from photosynthetic bacteria. Uyeda G; Williams JC; Roman M; Mattioli TA; Allen JP Biochemistry; 2010 Feb; 49(6):1146-59. PubMed ID: 20067231 [TBL] [Abstract][Full Text] [Related]
22. M-side electron transfer in reaction center mutants with a lysine near the nonphotoactive bacteriochlorophyll. Kirmaier C; Weems D; Holten D Biochemistry; 1999 Aug; 38(35):11516-30. PubMed ID: 10471304 [TBL] [Abstract][Full Text] [Related]
23. Time-resolved electrochromism associated with the formation of quinone anions in the Rhodobacter sphaeroides R26 reaction center. Tiede DM; Vázquez J; Córdova J; Marone PA Biochemistry; 1996 Aug; 35(33):10763-75. PubMed ID: 8718867 [TBL] [Abstract][Full Text] [Related]
24. Temperature dependence of electron transfer to the M-side bacteriopheophytin in rhodobacter capsulatus reaction centers. Chuang JI; Boxer SG; Holten D; Kirmaier C J Phys Chem B; 2008 May; 112(17):5487-99. PubMed ID: 18402487 [TBL] [Abstract][Full Text] [Related]
25. 13C chemical shift map of the active cofactors in photosynthetic reaction centers of Rhodobacter sphaeroides revealed by photo-CIDNP MAS NMR. Prakash S; Alia A; Gast P; de Groot HJ; Jeschke G; Matysik J Biochemistry; 2007 Aug; 46(31):8953-60. PubMed ID: 17630781 [TBL] [Abstract][Full Text] [Related]
26. Probing the contribution of electronic coupling to the directionality of electron transfer in photosynthetic reaction centers. Kirmaier C; Bautista JA; Laible PD; Hanson DK; Holten D J Phys Chem B; 2005 Dec; 109(50):24160-72. PubMed ID: 16375408 [TBL] [Abstract][Full Text] [Related]
27. Redox potential of quinones in photosynthetic reaction centers from Rhodobacter sphaeroides: dependence on protonation of Glu-L212 and Asp-L213. Ishikita H; Morra G; Knapp EW Biochemistry; 2003 Apr; 42(13):3882-92. PubMed ID: 12667079 [TBL] [Abstract][Full Text] [Related]
28. Effects of Asp residues near the L-side pigments in bacterial reaction centers. Heller BA; Holten D; Kirmaier C Biochemistry; 1996 Dec; 35(48):15418-27. PubMed ID: 8952494 [TBL] [Abstract][Full Text] [Related]
29. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B). Breton J; Lavergne J; Wakeham MC; Nabedryk E; Jones MR Biochemistry; 2007 Jun; 46(22):6468-76. PubMed ID: 17497939 [TBL] [Abstract][Full Text] [Related]
30. Photochemical trapping of a bacteriopheophytin anion in site-specific reaction-center mutants from the photosynthetic bacterium Rhodobacter sphaeroides. Gray KA; Wachtveitl J; Oesterhelt D Eur J Biochem; 1992 Jul; 207(2):723-31. PubMed ID: 1633823 [TBL] [Abstract][Full Text] [Related]
31. Modulation of quantum yield of primary radical pair formation in photosystem II by site-directed mutagenesis affecting radical cations and anions. Merry SA; Nixon PJ; Barter LM; Schilstra M; Porter G; Barber J; Durrant JR; Klug DR Biochemistry; 1998 Dec; 37(50):17439-47. PubMed ID: 9860859 [TBL] [Abstract][Full Text] [Related]
32. Structure, spectroscopic, and redox properties of Rhodobacter sphaeroides reaction centers bearing point mutations near the primary electron donor. Wachtveitl J; Farchaus JW; Das R; Lutz M; Robert B; Mattioli TA Biochemistry; 1993 Nov; 32(47):12875-86. PubMed ID: 8251510 [TBL] [Abstract][Full Text] [Related]
33. Characterization of bacterial reaction centers having mutations of aromatic residues in the binding site of the bacteriopheophytin intermediary electron carrier. Heller BA; Holten D; Kirmaier C Biochemistry; 1995 Apr; 34(15):5294-302. PubMed ID: 7711051 [TBL] [Abstract][Full Text] [Related]
34. Charge separation in a reaction center incorporating bacteriochlorophyll for photoactive bacteriopheophytin. Kirmaier C; Gaul D; DeBey R; Holten D; Schenck CC Science; 1991 Feb; 251(4996):922-7. PubMed ID: 2000491 [TBL] [Abstract][Full Text] [Related]
35. Structure of the charge separated state P865(+)Q(A)- in the photosynthetic reaction centers of Rhodobacter sphaeroides by quantum beat oscillations and high-field electron paramagnetic resonance: evidence for light-induced Q(A)- reorientation. Heinen U; Utschig LM; Poluektov OG; Link G; Ohmes E; Kothe G J Am Chem Soc; 2007 Dec; 129(51):15935-46. PubMed ID: 18052250 [TBL] [Abstract][Full Text] [Related]
36. Trapped tyrosyl radical populations in modified reaction centers from Rhodobacter sphaeroides. Narváez AJ; LoBrutto R; Allen JP; Williams JC Biochemistry; 2004 Nov; 43(45):14379-84. PubMed ID: 15533042 [TBL] [Abstract][Full Text] [Related]
37. Effects of ionizable residues on the absorption spectrum and initial electron-transfer kinetics in the photosynthetic reaction center of Rhodobacter sphaeroides. Johnson ET; Nagarajan V; Zazubovich V; Riley K; Small GJ; Parson WW Biochemistry; 2003 Nov; 42(46):13673-83. PubMed ID: 14622014 [TBL] [Abstract][Full Text] [Related]
39. Mechanism of recombination of the P+H(A)- radical pair in mutant Rhodobacter sphaeroides reaction centers with modified free energy gaps between P+B(A)- and P+H(A)-. Gibasiewicz K; Pajzderska M; Potter JA; Fyfe PK; Dobek A; Brettel K; Jones MR J Phys Chem B; 2011 Nov; 115(44):13037-50. PubMed ID: 21970763 [TBL] [Abstract][Full Text] [Related]
40. Two distinct conformations of the primary electron donor in reaction centers from Rhodobacter sphaeroides revealed by ENDOR/TRIPLE-spectroscopy. Müh F; Rautter J; Lubitz W Biochemistry; 1997 Apr; 36(14):4155-62. PubMed ID: 9100009 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]