BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9748340)

  • 1. Optimization of alternate-strand triple helix formation at the 5'CpG3' and 5'GpC3' junction steps.
    Marchand C; Sun JS; Bailly C; Waring MJ; Garestier T; Hélène C
    Biochemistry; 1998 Sep; 37(38):13322-9. PubMed ID: 9748340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleosides and nucleotides. 218. Alternate-strand triple-helix formation by the 3'-3'-linked oligodeoxynucleotides using a purine motif.
    Hoshika S; Ueno Y; Matsuda A
    Bioconjug Chem; 2003; 14(3):607-13. PubMed ID: 12757386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU.
    Gowers DM; Bijapur J; Brown T; Fox KR
    Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosides and nucleotides. Part 226: alternate-strand triple-helix formation by 3'-3'-linked oligodeoxynucleotides composed of asymmetrical sequences.
    Hoshika S; Ueno Y; Kamiya H; Matsuda A
    Bioorg Med Chem Lett; 2004 Jun; 14(12):3333-6. PubMed ID: 15149701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence and pH effects of LNA-containing triple helix-forming oligonucleotides: physical chemistry, biochemistry, and modeling studies.
    Sun BW; Babu BR; Sørensen MD; Zakrzewska K; Wengel J; Sun JS
    Biochemistry; 2004 Apr; 43(14):4160-9. PubMed ID: 15065859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of alternating oligopurine/oligopyrimidine tracts of DNA by oligonucleotides with base-to-base linkages.
    Zhou BW; Marchand C; Asseline U; Thuong NT; Sun JS; Garestier T; Hélène C
    Bioconjug Chem; 1995; 6(5):516-23. PubMed ID: 8974448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple helix structures: sequence dependence, flexibility and mismatch effects.
    Sun JS; Mergny JL; Lavery R; Montenay-Garestier T; Hélène C
    J Biomol Struct Dyn; 1991 Dec; 9(3):411-24. PubMed ID: 1815635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramolecular triple-helix formation at (PunPyn).(PunPyn) tracts: recognition of alternate strands via Pu.PuPy and Py.PuPy base triplets.
    Jayasena SD; Johnston BH
    Biochemistry; 1992 Jan; 31(2):320-7. PubMed ID: 1731890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New junction models for alternate-strand triple-helix formation.
    de Bizemont T; Sun JS; Garestier T; Hélène C
    Chem Biol; 1998 Dec; 5(12):755-62. PubMed ID: 9862797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical modification of pyrimidine TFOs: effect on i-motif and triple helix formation.
    Lacroix L; Mergny JL
    Arch Biochem Biophys; 2000 Sep; 381(1):153-63. PubMed ID: 11019831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligonucleotide-directed DNA triple-helix formation: an approach to artificial repressors?
    Maher LJ; Wold B; Dervan PB
    Antisense Res Dev; 1991; 1(3):277-81. PubMed ID: 1821648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of sequence-specific alkylation of DNA by pyrimidine oligodeoxyribonucleotide-directed triple-helix formation.
    Taylor MJ; Dervan PB
    Bioconjug Chem; 1997; 8(3):354-64. PubMed ID: 9177841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extension of the range of recognition sequences for triple helix formation by oligonucleotides containing guanines and thymines.
    Sun JS; De Bizemont T; Duval-Valentin G; Montenay-Garestier T; Hélène C
    C R Acad Sci III; 1991; 313(13):585-90. PubMed ID: 1782564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and studies of modified oligonucleotides-directed triple helix formation at the purine-pyrimidine interrupted site.
    Jazouli M; Guianvarc'h D; Bougrin K; Soufiaoui M; Vierling P; Benhida R
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1277-80. PubMed ID: 14565398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu-Pu-Py block.
    Balatskaya SV; Belotserkovskii BP; Johnston BH
    Biochemistry; 1996 Oct; 35(41):13328-37. PubMed ID: 8873599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining nucleoside analogues to achieve recognition of oligopurine tracts by triplex-forming oligonucleotides at physiological pH.
    Rusling DA; Le Strat L; Powers VE; Broughton-Head VJ; Booth J; Lack O; Brown T; Fox KR
    FEBS Lett; 2005 Dec; 579(29):6616-20. PubMed ID: 16293248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of alternate-strand triple helix formation at the 5"-TpA-3" and 5"-ApT-3" junctions.
    Brodin P; Sun JS; Mouscadet JF; Auclair C
    Nucleic Acids Res; 1999 Aug; 27(15):3029-34. PubMed ID: 10454596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triple helix-directed psoralen crosslinks are recognized by Uvr(A)BC excinuclease.
    Duval-Valentin G; Takasugi M; Hélène C; Sage E
    J Mol Biol; 1998 May; 278(4):815-25. PubMed ID: 9614944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand.
    de Bizemont T; Duval-Valentin G; Sun JS; Bisagni E; Garestier T; Hélène C
    Nucleic Acids Res; 1996 Mar; 24(6):1136-43. PubMed ID: 8604349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.