These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 9748346)
41. Engineering cyclophilin into a proline-specific endopeptidase. Quéméneur E; Moutiez M; Charbonnier JB; Ménez A Nature; 1998 Jan; 391(6664):301-4. PubMed ID: 9440697 [TBL] [Abstract][Full Text] [Related]
42. Catalyzed and assisted protein folding of ribonuclease T1. Schmid FX; Frech C; Scholz C; Walter S Biol Chem; 1996; 377(7-8):417-24. PubMed ID: 8922275 [TBL] [Abstract][Full Text] [Related]
43. Protein dynamics and enzymatic catalysis: investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin A. Agarwal PK; Geist A; Gorin A Biochemistry; 2004 Aug; 43(33):10605-18. PubMed ID: 15311922 [TBL] [Abstract][Full Text] [Related]
44. An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease. Wiemels RE; Cech SM; Meyer NM; Burke CA; Weiss A; Parks AR; Shaw LN; Carroll RK J Bacteriol; 2017 Jan; 199(1):. PubMed ID: 27795319 [TBL] [Abstract][Full Text] [Related]
45. The hsp70 chaperone DnaK is a secondary amide peptide bond cis-trans isomerase. Schiene-Fischer C; Habazettl J; Schmid FX; Fischer G Nat Struct Biol; 2002 Jun; 9(6):419-24. PubMed ID: 12021775 [TBL] [Abstract][Full Text] [Related]
46. Effects of proline mutations on the folding of staphylococcal nuclease. Maki K; Ikura T; Hayano T; Takahashi N; Kuwajima K Biochemistry; 1999 Feb; 38(7):2213-23. PubMed ID: 10026306 [TBL] [Abstract][Full Text] [Related]
47. The Bacillus subtilis nrdEF genes, encoding a class Ib ribonucleotide reductase, are essential for aerobic and anaerobic growth. Härtig E; Hartmann A; Schätzle M; Albertini AM; Jahn D Appl Environ Microbiol; 2006 Aug; 72(8):5260-5. PubMed ID: 16885274 [TBL] [Abstract][Full Text] [Related]
48. YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross-regulation of ykdA and yvtA gene expression. Noone D; Howell A; Collery R; Devine KM J Bacteriol; 2001 Jan; 183(2):654-63. PubMed ID: 11133960 [TBL] [Abstract][Full Text] [Related]
49. Molecular cloning and characterization of Aspergillus nidulans cyclophilin B. Joseph JD; Heitman J; Means AR Fungal Genet Biol; 1999 Jun; 27(1):55-66. PubMed ID: 10413615 [TBL] [Abstract][Full Text] [Related]
50. Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli. Ullers RS; Ang D; Schwager F; Georgopoulos C; Genevaux P Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3101-6. PubMed ID: 17360615 [TBL] [Abstract][Full Text] [Related]
51. Staphylococcus aureus Trigger Factor Is Involved in Biofilm Formation and Cooperates with the Chaperone PpiB. Keogh RA; Zapf RL; Frey A; Marino EC; Null GG; Wiemels RE; Holzschu DL; Shaw LN; Carroll RK J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33468596 [TBL] [Abstract][Full Text] [Related]
52. Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant. Ruan B; Hoskins J; Bryan PN Biochemistry; 1999 Jun; 38(26):8562-71. PubMed ID: 10387104 [TBL] [Abstract][Full Text] [Related]
53. Prolyl isomerization and its catalysis in protein folding and protein function. Schmidpeter PA; Schmid FX J Mol Biol; 2015 Apr; 427(7):1609-31. PubMed ID: 25676311 [TBL] [Abstract][Full Text] [Related]
54. A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. Schlapschy M; Grimm S; Skerra A Protein Eng Des Sel; 2006 Aug; 19(8):385-90. PubMed ID: 16720693 [TBL] [Abstract][Full Text] [Related]
55. Expression cloning and biochemical characterizations of recombinant cyclophilin proteins from Schistosoma mansoni. Bugli F; Khattab A; Vigneti E; Butler R; Cioli D; Klinkert MQ Protein Expr Purif; 1998 Apr; 12(3):340-6. PubMed ID: 9535701 [TBL] [Abstract][Full Text] [Related]
56. Roles and regulation of the glutamate racemase isogenes, racE and yrpC, in Bacillus subtilis. Kimura K; Tran LP; Itoh Y Microbiology (Reading); 2004 Sep; 150(Pt 9):2911-2920. PubMed ID: 15347750 [TBL] [Abstract][Full Text] [Related]
57. Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N- and C-terminal domains in protein folding and secretion in Bacillus subtilis. Vitikainen M; Lappalainen I; Seppala R; Antelmann H; Boer H; Taira S; Savilahti H; Hecker M; Vihinen M; Sarvas M; Kontinen VP J Biol Chem; 2004 Apr; 279(18):19302-14. PubMed ID: 14976191 [TBL] [Abstract][Full Text] [Related]
58. Identification of Substrates of Cytoplasmic Peptidyl-Prolyl Klein G; Wojtkiewicz P; Biernacka D; Stupak A; Gorzelak P; Raina S Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32545723 [TBL] [Abstract][Full Text] [Related]
59. [Viability of Bacillus subtilis auxotrophs in the absence of their essential metabolites]. Franco MA; Santillán MA; de Torres RA; D'Aquino M Rev Argent Microbiol; 1990; 22(1):1-6. PubMed ID: 2125739 [TBL] [Abstract][Full Text] [Related]
60. [Characteristics of intracellular proteolysis in the cells of Bacillus subtilis]. Belitskiĭ BR; Shakulov RS Biokhimiia; 1980 Oct; 45(10):1788-96. PubMed ID: 6786368 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]