These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 9748482)

  • 41. The role of the Zn(II) binding domain in the mechanism of E. coli DNA topoisomerase I.
    Ahumada A; Tse-Dinh YC
    BMC Biochem; 2002 May; 3():13. PubMed ID: 12052259
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea.
    Forterre P; Bergerat A; Lopez-Garcia P
    FEMS Microbiol Rev; 1996 May; 18(2-3):237-48. PubMed ID: 8639331
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural basis for suppression of hypernegative DNA supercoiling by E. coli topoisomerase I.
    Tan K; Zhou Q; Cheng B; Zhang Z; Joachimiak A; Tse-Dinh YC
    Nucleic Acids Res; 2015 Dec; 43(22):11031-46. PubMed ID: 26490962
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High positive supercoiling in vitro catalyzed by an ATP and polyethylene glycol-stimulated topoisomerase from Sulfolobus acidocaldarius.
    Forterre P; Mirambeau G; Jaxel C; Nadal M; Duguet M
    EMBO J; 1985 Aug; 4(8):2123-8. PubMed ID: 14708549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Speculations on the origin of life and thermophily: review of available information on reverse gyrase suggests that hyperthermophilic procaryotes are not so primitive.
    Forterre P; Confalonieri F; Charbonnier F; Duguet M
    Orig Life Evol Biosph; 1995 Jun; 25(1-3):235-49. PubMed ID: 11536676
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling.
    Ganguly A; Del Toro Duany Y; Rudolph MG; Klostermeier D
    Nucleic Acids Res; 2011 Mar; 39(5):1789-800. PubMed ID: 21051354
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conformational changes in E. coli DNA topoisomerase I.
    Feinberg H; Lima CD; Mondragón A
    Nat Struct Biol; 1999 Oct; 6(10):918-22. PubMed ID: 10504724
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The reverse gyrase from Pyrobaculum calidifontis, a novel extremely thermophilic DNA topoisomerase endowed with DNA unwinding and annealing activities.
    Jamroze A; Perugino G; Valenti A; Rashid N; Rossi M; Akhtar M; Ciaramella M
    J Biol Chem; 2014 Feb; 289(6):3231-43. PubMed ID: 24347172
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of eukaryotic DNA topoisomerases and topoisomerase-directed drug effects.
    Boege F
    Eur J Clin Chem Clin Biochem; 1996 Nov; 34(11):873-88. PubMed ID: 8960461
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biochemical Basis of
    Zhou Q; Gomez Hernandez ME; Fernandez-Lima F; Tse-Dinh YC
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29751635
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Experimental and computational investigations of Ser10 and Lys13 in the binding and cleavage of DNA substrates by Escherichia coli DNA topoisomerase I.
    Strahs D; Zhu CX; Cheng B; Chen J; Tse-Dinh YC
    Nucleic Acids Res; 2006; 34(6):1785-97. PubMed ID: 16582104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DNA topoisomerase I from mycobacteria--a potential drug target.
    Nagaraja V; Sikder D; Jain P
    Curr Pharm Des; 2002; 8(22):1995-2007. PubMed ID: 12171525
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase.
    Rodríguez AC
    Biochemistry; 2003 May; 42(20):5993-6004. PubMed ID: 12755601
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of DNA relaxation and cleavage activities of recombinant Mycobacterium tuberculosis DNA topoisomerase I from a new expression and purification protocol.
    Annamalai T; Dani N; Cheng B; Tse-Dinh YC
    BMC Biochem; 2009 Jun; 10():18. PubMed ID: 19519900
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA bending, compaction and negative supercoiling by the architectural protein Sso7d of Sulfolobus solfataricus.
    Napoli A; Zivanovic Y; Bocs C; Buhler C; Rossi M; Forterre P; Ciaramella M
    Nucleic Acids Res; 2002 Jun; 30(12):2656-62. PubMed ID: 12060682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies of a positive supercoiling machine. Nucleotide hydrolysis and a multifunctional "latch" in the mechanism of reverse gyrase.
    Rodriguez AC
    J Biol Chem; 2002 Aug; 277(33):29865-73. PubMed ID: 12048189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanism of Type IA Topoisomerases.
    Dasgupta T; Ferdous S; Tse-Dinh YC
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33080770
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resolution of Holliday junction substrates by human topoisomerase I.
    Hede MS; Petersen RL; Frøhlich RF; Krüger D; Andersen FF; Andersen AH; Knudsen BR
    J Mol Biol; 2007 Jan; 365(4):1076-92. PubMed ID: 17101150
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology.
    Schoeffler AJ; Berger JM
    Q Rev Biophys; 2008 Feb; 41(1):41-101. PubMed ID: 18755053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.