These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 9749373)
1. Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. Brashears MM; Gilliland SE; Buck LM J Dairy Sci; 1998 Aug; 81(8):2103-10. PubMed ID: 9749373 [TBL] [Abstract][Full Text] [Related]
2. Deconjugation of bile acids by intestinal lactobacilli. Gilliland SE; Speck ML Appl Environ Microbiol; 1977 Jan; 33(1):15-8. PubMed ID: 13710 [TBL] [Abstract][Full Text] [Related]
3. Relationship among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. Walker DK; Gilliland SE J Dairy Sci; 1993 Apr; 76(4):956-61. PubMed ID: 8486846 [TBL] [Abstract][Full Text] [Related]
4. The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Klaver FA; van der Meer R Appl Environ Microbiol; 1993 Apr; 59(4):1120-4. PubMed ID: 8489229 [TBL] [Abstract][Full Text] [Related]
5. Comparisons of freshly isolated strains of Lactobacillus acidophilus of human intestinal origin for ability to assimilate cholesterol during growth. Buck LM; Gilliland SE J Dairy Sci; 1994 Oct; 77(10):2925-33. PubMed ID: 7836579 [TBL] [Abstract][Full Text] [Related]
6. Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. Dambekodi PC; Gilliland SE J Dairy Sci; 1998 Jul; 81(7):1818-24. PubMed ID: 9710749 [TBL] [Abstract][Full Text] [Related]
7. Bile salt deconjugation and cholesterol removal from media by Lactobacillus strains used as probiotics in chickens. Ramasamy K; Abdullah N; Wong MC; Karuthan C; Ho YW J Sci Food Agric; 2010 Jan; 90(1):65-9. PubMed ID: 20355013 [TBL] [Abstract][Full Text] [Related]
9. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. Corzo G; Gilliland SE J Dairy Sci; 1999 Mar; 82(3):472-80. PubMed ID: 10194664 [TBL] [Abstract][Full Text] [Related]
10. The effect of NaCl substitution with KCl on proteinase activities of cell-free extract and cell-free supernatant at different pH levels and salt concentrations: Lactobacillus acidophilus and Lactobacillus casei. Ayyash MM; Sherkat F; Shah NP J Dairy Sci; 2013 Jan; 96(1):40-9. PubMed ID: 23084889 [TBL] [Abstract][Full Text] [Related]
11. Measurement of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated bile salts. Corzo G; Gilliland SE J Dairy Sci; 1999 Mar; 82(3):466-71. PubMed ID: 10194663 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. Noh DO; Kim SH; Gilliland SE J Dairy Sci; 1997 Dec; 80(12):3107-13. PubMed ID: 9436091 [TBL] [Abstract][Full Text] [Related]
13. Effects of bile salt deconjugation by probiotic strains on the survival of antibiotic-resistant foodborne pathogens under simulated gastric conditions. He X; Zou Y; Cho Y; Ahn J J Food Prot; 2012 Jun; 75(6):1090-8. PubMed ID: 22691477 [TBL] [Abstract][Full Text] [Related]
14. Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. Usman ; Hosono A J Dairy Sci; 1999 Feb; 82(2):243-8. PubMed ID: 10068945 [TBL] [Abstract][Full Text] [Related]
15. Determining the probiotic potential of cholesterol-reducing Lactobacillus and Weissella strains isolated from gherkins (fermented cucumber) and south Indian fermented koozh. Anandharaj M; Sivasankari B; Santhanakaruppu R; Manimaran M; Rani RP; Sivakumar S Res Microbiol; 2015 Jun; 166(5):428-439. PubMed ID: 25839996 [TBL] [Abstract][Full Text] [Related]
16. Use of Lactobacillus acidophilus and Lactobacillus casei for a potential probiotic legume-based fermented product using pigeon pea (Cajanus cajan). Parra K; Ferrer M; Piñero M; Barboza Y; Medina LM J Food Prot; 2013 Feb; 76(2):265-71. PubMed ID: 23433374 [TBL] [Abstract][Full Text] [Related]
17. Modeling in vitro cholesterol reduction in relation to growth of probiotic Lactobacillus casei. Kumar A; Kumar M; Ghosh M; Ganguli A Microbiol Immunol; 2013 Feb; 57(2):100-10. PubMed ID: 23252703 [TBL] [Abstract][Full Text] [Related]
18. [Biological effect of extracellular peptide factor from Lateococcus japonicas subsp. casei on probiotic bacteria]. Vorob'eva LI; Khodzhaev EIu; Kharchenko NV; Novikova TM; Cherdyntseva TA Prikl Biokhim Mikrobiol; 2014; 50(4):383-90. PubMed ID: 25707114 [TBL] [Abstract][Full Text] [Related]
19. Production of free conjugated linoleic acid by Lactobacillus acidophilus and Lactobacillus casei of human intestinal origin. Alonso L; Cuesta EP; Gilliland SE J Dairy Sci; 2003 Jun; 86(6):1941-6. PubMed ID: 12836928 [TBL] [Abstract][Full Text] [Related]
20. In vitro studies on the growth of Shigella sonnei by Lactobacillus casei and Lact. acidophilus. Apella MC; González SN; Nader de Macías ME; Romero N; Oliver G J Appl Bacteriol; 1992 Dec; 73(6):480-3. PubMed ID: 1490909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]