BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9749534)

  • 1. Major identity element of glutamine tRNAs from Bacillus subtilis and Escherichia coli in the reaction with B. subtilis glutamyl-tRNA synthetase.
    Kim SI; Söll D
    Mol Cells; 1998 Aug; 8(4):459-65. PubMed ID: 9749534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth inhibition of Escherichia coli during heterologous expression of Bacillus subtilis glutamyl-tRNA synthetase that catalyzes the formation of mischarged glutamyl-tRNA1 Gln.
    Baick JW; Yoon JH; Namgoong S; Söll D; Kim SI; Eom SH; Hong KW
    J Microbiol; 2004 Jun; 42(2):111-6. PubMed ID: 15357304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
    Rogers KC; Söll D
    Biochemistry; 1993 Dec; 32(51):14210-9. PubMed ID: 7505112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position.
    Rodriguez-Hernandez A; Spears JL; Gaston KW; Limbach PA; Gamper H; Hou YM; Kaiser R; Agris PF; Perona JJ
    J Mol Biol; 2013 Oct; 425(20):3888-906. PubMed ID: 23727144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overproduction of the Bacillus subtilis glutamyl-tRNA synthetase in its host and its toxicity to Escherichia coli.
    Pelchat M; Lacoste L; Yang F; Lapointe J
    Can J Microbiol; 1998 Apr; 44(4):378-81. PubMed ID: 9674110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Major identity determinants in the "augmented D helix" of tRNA(Glu) from Escherichia coli.
    Sekine S; Nureki O; Sakamoto K; Niimi T; Tateno M; Go M; Kohno T; Brisson A; Lapointe J; Yokoyama S
    J Mol Biol; 1996 Mar; 256(4):685-700. PubMed ID: 8642591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two enzymes bound to one transfer RNA assume alternative conformations for consecutive reactions.
    Ito T; Yokoyama S
    Nature; 2010 Sep; 467(7315):612-6. PubMed ID: 20882017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor.
    Guo LT; Helgadóttir S; Söll D; Ling J
    Nucleic Acids Res; 2012 Sep; 40(16):7967-74. PubMed ID: 22661575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo formation of glutamyl-tRNA(Gln) in Escherichia coli by heterologous glutamyl-tRNA synthetases.
    Núñez H; Lefimil C; Min B; Söll D; Orellana O
    FEBS Lett; 2004 Jan; 557(1-3):133-5. PubMed ID: 14741355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamyl-tRNA sythetase.
    Freist W; Gauss DH; Söll D; Lapointe J
    Biol Chem; 1997 Nov; 378(11):1313-29. PubMed ID: 9426192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutant enzymes and tRNAs as probes of the glutaminyl-tRNA synthetase: tRNA(Gln) interaction.
    Englisch-Peters S; Conley J; Plumbridge J; Leptak C; Söll D; Rogers MJ
    Biochimie; 1991 Dec; 73(12):1501-8. PubMed ID: 1725262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates.
    Salazar JC; Ahel I; Orellana O; Tumbula-Hansen D; Krieger R; Daniels L; Söll D
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13863-8. PubMed ID: 14615592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for unfolding of the single-stranded GCCA 3'-End of a tRNA on its aminoacyl-tRNA synthetase from a stacked helical to a foldback conformation.
    Madore E; Lipman RS; Hou YM; Lapointe J
    Biochemistry; 2000 Jun; 39(23):6791-8. PubMed ID: 10841758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent anticodon recognition in contrasting glutamyl-tRNA synthetases.
    Lee J; Hendrickson TL
    J Mol Biol; 2004 Dec; 344(5):1167-74. PubMed ID: 15561136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase.
    Sekine S; Nureki O; Shimada A; Vassylyev DG; Yokoyama S
    Nat Struct Biol; 2001 Mar; 8(3):203-6. PubMed ID: 11224561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity.
    Campanacci V; Dubois DY; Becker HD; Kern D; Spinelli S; Valencia C; Pagot F; Salomoni A; Grisel S; Vincentelli R; Bignon C; Lapointe J; Giegé R; Cambillau C
    J Mol Biol; 2004 Mar; 337(2):273-83. PubMed ID: 15003446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of tRNAGln by Helicobacter pylori GluRS2--a tRNAGln-specific glutamyl-tRNA synthetase.
    Chang KM; Hendrickson TL
    Nucleic Acids Res; 2009 Nov; 37(20):6942-9. PubMed ID: 19755501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergence of glutamate and glutamine aminoacylation pathways: providing the evolutionary rationale for mischarging.
    Rogers KC; Söll D
    J Mol Evol; 1995 May; 40(5):476-81. PubMed ID: 7783222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an 'orthogonal' suppressor tRNA derived from E. coli tRNA2(Gln).
    Liu DR; Magliery TJ; Schultz PG
    Chem Biol; 1997 Sep; 4(9):685-91. PubMed ID: 9331409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation.
    Nureki O; O'Donoghue P; Watanabe N; Ohmori A; Oshikane H; Araiso Y; Sheppard K; Söll D; Ishitani R
    Nucleic Acids Res; 2010 Nov; 38(20):7286-97. PubMed ID: 20601684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.