These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9749557)

  • 1. Loading paradigms--intentional and unintentional--for cell culture mechanostimulus.
    Brown TD; Bottlang M; Pedersen DR; Banes AJ
    Am J Med Sci; 1998 Sep; 316(3):162-8. PubMed ID: 9749557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Experimental Validation of a Fluid/Structure-Interaction Finite Element Model of a Vacuum-Driven Cell Culture Mechanostimulus System.
    Brown TD; Bottlang M; Pedersen DR; Banes AJ
    Comput Methods Biomech Biomed Engin; 2000; 3(1):65-78. PubMed ID: 11264839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analyses of fluid flow conditions in cell culture.
    Salvi JD; Lim JY; Donahue HJ
    Tissue Eng Part C Methods; 2010 Aug; 16(4):661-70. PubMed ID: 19778171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Newtonian rheology in suspension cell cultures significantly impacts bioreactor shear stress quantification.
    Wyma A; Martin-Alarcon L; Walsh T; Schmidt TA; Gates ID; Kallos MS
    Biotechnol Bioeng; 2018 Aug; 115(8):2101-2113. PubMed ID: 29704461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Techniques for mechanical stimulation of cells in vitro: a review.
    Brown TD
    J Biomech; 2000 Jan; 33(1):3-14. PubMed ID: 10609513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation.
    Chung CA; Chen CW; Chen CP; Tseng CS
    Biotechnol Bioeng; 2007 Aug; 97(6):1603-16. PubMed ID: 17304558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying fluid shear stress in a rocking culture dish.
    Zhou X; Liu D; You L; Wang L
    J Biomech; 2010 May; 43(8):1598-602. PubMed ID: 20185133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of fluid flow within a device for applying biaxial strain to cultured cells.
    Lee J; Baker AB
    J Biomech Eng; 2015 May; 137(5):051006. PubMed ID: 25611013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics for improved bioreactor design and 3D culture.
    Hutmacher DW; Singh H
    Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A medium throughput device to study the effects of combinations of surface strains and fluid-flow shear stresses on cells.
    Sinha R; Le Gac S; Verdonschot N; van den Berg A; Koopman B; Rouwkema J
    Lab Chip; 2015 Jan; 15(2):429-39. PubMed ID: 25377548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification and significance of fluid shear stress field in biaxial cell stretching device.
    Thompson MS; Abercrombie SR; Ott CE; Bieler FH; Duda GN; Ventikos Y
    Biomech Model Mechanobiol; 2011 Jul; 10(4):559-64. PubMed ID: 20853016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold.
    Guyot Y; Papantoniou I; Luyten FP; Geris L
    Biomech Model Mechanobiol; 2016 Feb; 15(1):169-80. PubMed ID: 26758425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid mechanics of a spinner-flask bioreactor.
    Sucosky P; Osorio DF; Brown JB; Neitzel GP
    Biotechnol Bioeng; 2004 Jan; 85(1):34-46. PubMed ID: 14705010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical characterization of a novel cell stimulating system (CSS) to apply dynamic, uniform and isotropic biaxial strains to cells in vitro.
    Jahangir A; Lee JM; Waldman SD; Anderson GI
    Biomed Sci Instrum; 2002; 38():215-20. PubMed ID: 12085605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic Stretch and Perfusion Bioreactor for Conditioning Large Diameter Engineered Tissue Tubes.
    Schmidt JB; Tranquillo RT
    Ann Biomed Eng; 2016 May; 44(5):1785-97. PubMed ID: 26307332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system.
    Satoh T; Narazaki G; Sugita R; Kobayashi H; Sugiura S; Kanamori T
    Lab Chip; 2016 Jun; 16(12):2339-48. PubMed ID: 27229626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell morphological response to low shear stress in a two-dimensional culture microsystem with magnitudes comparable to interstitial shear stress.
    Park JY; Yoo SJ; Patel L; Lee SH; Lee SH
    Biorheology; 2010; 47(3-4):165-78. PubMed ID: 21084742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach.
    Vetsch JR; Betts DC; Müller R; Hofmann S
    PLoS One; 2017; 12(7):e0180781. PubMed ID: 28686698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass transport and shear stress in a microchannel bioreactor: numerical simulation and dynamic similarity.
    Zeng Y; Lee TS; Yu P; Roy P; Low HT
    J Biomech Eng; 2006 Apr; 128(2):185-93. PubMed ID: 16524329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally determined shear on cells grown in orbiting culture dishes.
    Berson RE; Purcell MR; Sharp MK
    Adv Exp Med Biol; 2008; 614():189-98. PubMed ID: 18290329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.