These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9749691)

  • 21. Force-deformation properties of the human heel pad during barefoot walking.
    Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A
    Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of the augmentation effects of hyaluronic acid on different heel structures in amputated lower limbs of diabetic patients using ultrasound elastography.
    Hsu CC; Chen CP; Lin SC; Tsai WC; Liu HT; Lin YC; Lee HJ; Chen WP
    Ultrasound Med Biol; 2012 Jun; 38(6):943-52. PubMed ID: 22502884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanics of the heel pad for type 2 diabetic patients.
    Hsu TC; Lee YS; Shau YW
    Clin Biomech (Bristol, Avon); 2002 May; 17(4):291-6. PubMed ID: 12034122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shock absorbency of factors in the shoe/heel interaction--with special focus on role of the heel pad.
    Jørgensen U; Bojsen-Møller F
    Foot Ankle; 1989 Jun; 9(6):294-9. PubMed ID: 2744671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasonic heel pad thickness measurements: a preliminary study.
    Rome K; Campbell RS; Flint AA; Haslock I
    Br J Radiol; 1998 Nov; 71(851):1149-52. PubMed ID: 10434909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heel pad stiffness in runners with plantar heel pain.
    Rome K; Webb P; Unsworth A; Haslock I
    Clin Biomech (Bristol, Avon); 2001 Dec; 16(10):901-5. PubMed ID: 11733128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability.
    Spears IR; Miller-Young JE
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):204-12. PubMed ID: 16289518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The HPC-device: a method to quantify the heel pad shock absorbency.
    Jørgensen U; Larsen E; Varmarken JE
    Foot Ankle; 1989 Oct; 10(2):93-8. PubMed ID: 2807112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered stiffness of microchamber and macrochamber layers in the aged heel pad: Shear wave ultrasound elastography evaluation.
    Wu CH; Lin CY; Hsiao MY; Cheng YH; Chen WS; Wang TG
    J Formos Med Assoc; 2018 May; 117(5):434-439. PubMed ID: 28545991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sex differences in heel pad stiffness during in vivo loading and unloading.
    Ugbolue UC; Yates EL; Wearing SC; Gu Y; Lam WK; Valentin S; Baker JS; Dutheil F; Sculthorpe NF
    J Anat; 2020 Sep; 237(3):520-528. PubMed ID: 33448360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Achillodynia and loss of heel pad shock absorbency.
    Jørgensen U
    Am J Sports Med; 1985; 13(2):128-32. PubMed ID: 3985261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigations into the fat pads of the sole of the foot: heel pressure studies.
    Jahss MH; Kummer F; Michelson JD
    Foot Ankle; 1992 Jun; 13(5):227-32. PubMed ID: 1624185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial-dependent mechanical properties of the heel pad by shear wave elastography.
    Lin CY; Chen PY; Shau YW; Tai HC; Wang CL
    J Biomech; 2017 Feb; 53():191-195. PubMed ID: 28087063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a clinical instrument to measure heel pad indentation.
    Rome K; Webb P
    Clin Biomech (Bristol, Avon); 2000 May; 15(4):298-300. PubMed ID: 10675673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relationship between the mechanical properties of heel-pad and common clinical measures associated with foot ulcers in patients with diabetes.
    Chatzistergos PE; Naemi R; Sundar L; Ramachandran A; Chockalingam N
    J Diabetes Complications; 2014; 28(4):488-93. PubMed ID: 24795257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad.
    Chatzistergos PE; Behforootan S; Allan D; Naemi R; Chockalingam N
    J Biomech; 2018 Oct; 80():144-150. PubMed ID: 30241799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The heel pad in plantar heel pain.
    Prichasuk S
    J Bone Joint Surg Br; 1994 Jan; 76(1):140-2. PubMed ID: 8300659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relationship of heel pad elasticity and plantar heel pain.
    Turgut A; Göktürk E; Köse N; Seber S; Hazer B; Günal I
    Clin Orthop Relat Res; 1999 Mar; (360):191-6. PubMed ID: 10101325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results.
    Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN
    Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.