These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 9749711)

  • 1. Modification of parallel activity elicited by propagating bursts in developing networks of rat cortical neurones.
    Maeda E; Kuroda Y; Robinson HP; Kawana A
    Eur J Neurosci; 1998 Feb; 10(2):488-96. PubMed ID: 9749711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons.
    Maeda E; Robinson HP; Kawana A
    J Neurosci; 1995 Oct; 15(10):6834-45. PubMed ID: 7472441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays.
    Jimbo Y; Robinson HP; Kawana A
    IEEE Trans Biomed Eng; 1998 Nov; 45(11):1297-304. PubMed ID: 9805828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extremely rich repertoire of bursting patterns during the development of cortical cultures.
    Wagenaar DA; Pine J; Potter SM
    BMC Neurosci; 2006 Feb; 7():11. PubMed ID: 16464257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic synchronized bursting and intracellular calcium transients elicited by low magnesium in cultured cortical neurons.
    Robinson HP; Kawahara M; Jimbo Y; Torimitsu K; Kuroda Y; Kawana A
    J Neurophysiol; 1993 Oct; 70(4):1606-16. PubMed ID: 8283217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-site stimulation quiets network-wide spontaneous bursts and enhances functional plasticity in cultured cortical networks.
    Madhavan R; Chao ZC; Wagenaar DA; Bakkum DJ; Potter SM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1593-6. PubMed ID: 17946052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MEA-based recording of neuronal activity in vitro.
    Jimbo Y
    Arch Ital Biol; 2007 Nov; 145(3-4):289-97. PubMed ID: 18075122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic plasticity in local cortical network in vivo and its modulation by the level of neuronal activity.
    Crochet S; Fuentealba P; Cissé Y; Timofeev I; Steriade M
    Cereb Cortex; 2006 May; 16(5):618-31. PubMed ID: 16049189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks.
    van Pelt J; Wolters PS; Corner MA; Rutten WL; Ramakers GJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2051-62. PubMed ID: 15536907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous measurement of intracellular calcium and electrical activity from patterned neural networks in culture.
    Jimbo Y; Robinson HP; Kawana A
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):804-10. PubMed ID: 8258447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of recurring spatiotemporal activity patterns in cortical networks.
    Madhavan R; Chao ZC; Potter SM
    Phys Biol; 2007 Oct; 4(3):181-93. PubMed ID: 17928657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of individual spikes in burst-induced long-term synaptic modification.
    Froemke RC; Tsay IA; Raad M; Long JD; Dan Y
    J Neurophysiol; 2006 Mar; 95(3):1620-9. PubMed ID: 16319206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of cortical network activity on short-term synaptic depression.
    Reig R; Gallego R; Nowak LG; Sanchez-Vives MV
    Cereb Cortex; 2006 May; 16(5):688-95. PubMed ID: 16107589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilaterally propagating waves of spontaneous activity arising from discrete pacemakers in the neonatal mouse cerebral cortex.
    Lischalk JW; Easton CR; Moody WJ
    Dev Neurobiol; 2009 Jun; 69(7):407-14. PubMed ID: 19263415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of synchronized bursts in cultured hippocampal neuronal networks with learning training on microelectrode arrays.
    Li Y; Zhou W; Li X; Zeng S; Liu M; Luo Q
    Biosens Bioelectron; 2007 Jun; 22(12):2976-82. PubMed ID: 17240134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms controlling bursting activity induced by disinhibition in spinal cord networks.
    Darbon P; Scicluna L; Tscherter A; Streit J
    Eur J Neurosci; 2002 Feb; 15(4):671-83. PubMed ID: 11886448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Searching for plasticity in dissociated cortical cultures on multi-electrode arrays.
    Wagenaar DA; Pine J; Potter SM
    J Negat Results Biomed; 2006 Oct; 5():16. PubMed ID: 17067395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic bursting of cultured cortical neurons in low magnesium: cellular and network mechanisms.
    Robinson HP; Torimitsu K; Jimbo Y; Kuroda Y; Kawana A
    Jpn J Physiol; 1993; 43 Suppl 1():S125-30. PubMed ID: 8271484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenon-induced inhibition of synchronized bursts in a rat cortical neuronal network.
    Uchida T; Suzuki S; Hirano Y; Ito D; Nagayama M; Gohara K
    Neuroscience; 2012 Jul; 214():149-58. PubMed ID: 22531374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Management of synchronized network activity by highly active neurons.
    Shein M; Volman V; Raichman N; Hanein Y; Ben-Jacob E
    Phys Biol; 2008 Sep; 5(3):036008. PubMed ID: 18780962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.