These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9749787)

  • 1. A role for slow NMDA receptor-mediated, intrinsic neuronal oscillations in the control of fast fictive swimming in Xenopus laevis larvae.
    Reith CA; Sillar KT
    Eur J Neurosci; 1998 Apr; 10(4):1329-40. PubMed ID: 9749787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage oscillations in Xenopus spinal cord neurons: developmental onset and dependence on co-activation of NMDA and 5HT receptors.
    Scrymgeour-Wedderburn JF; Reith CA; Sillar KT
    Eur J Neurosci; 1997 Jul; 9(7):1473-82. PubMed ID: 9240404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles.
    Issberner JP; Sillar KT
    Eur J Neurosci; 2007 Nov; 26(9):2556-64. PubMed ID: 17970719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5HT induces NMDA receptor-mediated intrinsic oscillations in embryonic amphibian spinal neurons.
    Sillar KT; Simmers AJ
    Proc Biol Sci; 1994 Feb; 255(1343):139-45. PubMed ID: 8165227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory membrane properties of spinal cord neurons that are active during fictive swimming in Rana temporaria embryos.
    Sillar KT; Simmers AJ
    Eur J Morphol; 1994 Aug; 32(2-4):185-92. PubMed ID: 7803165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and role of GABA(A) receptor-mediated synaptic potentials during swimming in postembryonic Xenopus laevis tadpoles.
    Reith CA; Sillar KT
    J Neurophysiol; 1999 Dec; 82(6):3175-87. PubMed ID: 10601451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-Methyl-D-aspartate-induced oscillations in whole cell clamped neurons from the isolated spinal cord of Xenopus laevis embryos.
    Prime L; Pichon Y; Moore LE
    J Neurophysiol; 1999 Aug; 82(2):1069-73. PubMed ID: 10444699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of Magnesium Ions on the NMDA Mediated Responses of Ventral Rhythmic Neurons in the Spinal Cord of Xenopus Embryos.
    Soffe SR; Roberts A
    Eur J Neurosci; 1989 Sep; 1(5):507-515. PubMed ID: 12106136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate receptor subtypes differentially contribute to optogenetically activated swimming in spinally transected zebrafish larvae.
    Wahlstrom-Helgren S; Montgomery JE; Vanpelt KT; Biltz SL; Peck JH; Masino MA
    J Neurophysiol; 2019 Dec; 122(6):2414-2426. PubMed ID: 31642404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptically evoked membrane potential oscillations induced by substance P in lamprey motor neurons.
    Svensson E; Grillner S; Parker D
    J Neurophysiol; 2002 Jan; 87(1):113-21. PubMed ID: 11784734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-methyl-D-aspartate receptor-induced, inherent oscillatory activity in neurons active during fictive locomotion in the lamprey.
    Wallén P; Grillner S
    J Neurosci; 1987 Sep; 7(9):2745-55. PubMed ID: 3040925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific brainstem neurons switch each other into pacemaker mode to drive movement by activating NMDA receptors.
    Li WC; Roberts A; Soffe SR
    J Neurosci; 2010 Dec; 30(49):16609-20. PubMed ID: 21148000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva.
    McDearmid JR; Drapeau P
    J Neurophysiol; 2006 Jan; 95(1):401-17. PubMed ID: 16207779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic basis for endogenous rhythmic patterns induced by activation of N-methyl-D-aspartate receptors in neurons of the rat nucleus tractus solitarii.
    Tell F; Jean A
    J Neurophysiol; 1993 Dec; 70(6):2379-90. PubMed ID: 7509858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of swimming rhythmicity by 5-hydroxytryptamine during post-embryonic development in Xenopus laevis.
    Sillar KT; Wedderburn JF; Simmers AJ
    Proc Biol Sci; 1992 Nov; 250(1328):107-14. PubMed ID: 1361984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide selectively tunes inhibitory synapses to modulate vertebrate locomotion.
    McLean DL; Sillar KT
    J Neurosci; 2002 May; 22(10):4175-84. PubMed ID: 12019335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow dorsal-ventral rhythm generator in the lamprey spinal cord.
    Aoki F; Wannier T; Grillner S
    J Neurophysiol; 2001 Jan; 85(1):211-8. PubMed ID: 11152721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage clamp analysis of lamprey neurons--role of N-methyl-D-aspartate receptors in fictive locomotion.
    Moore LE; Hill RH; Grillner S
    Brain Res; 1987 Sep; 419(1-2):397-402. PubMed ID: 2823967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA receptor-mediated oscillatory activity in the neonatal rat spinal cord is serotonin dependent.
    MacLean JN; Cowley KC; Schmidt BJ
    J Neurophysiol; 1998 May; 79(5):2804-8. PubMed ID: 9582246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.