BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 9749917)

  • 1. Folding motifs induced and stabilized by distinct cystine frameworks.
    Tamaoki H; Miura R; Kusunoki M; Kyogoku Y; Kobayashi Y; Moroder L
    Protein Eng; 1998 Aug; 11(8):649-59. PubMed ID: 9749917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The three-dimensional structure of an H-superfamily conotoxin reveals a granulin fold arising from a common ICK cysteine framework.
    Nielsen LD; Foged MM; Albert A; Bertelsen AB; Søltoft CL; Robinson SD; Petersen SV; Purcell AW; Olivera BM; Norton RS; Vasskog T; Safavi-Hemami H; Teilum K; Ellgaard L
    J Biol Chem; 2019 May; 294(22):8745-8759. PubMed ID: 30975904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel endogenous inhibitor of phenoloxidase from Musca domestica has a cystine motif commonly found in snail and spider toxins.
    Daquinag AC; Sato T; Koda H; Takao T; Fukuda M; Shimonishi Y; Tsukamoto T
    Biochemistry; 1999 Feb; 38(7):2179-88. PubMed ID: 10026302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of disulfide bonds in folding and activity of leiurotoxin I: just two disulfides suffice.
    Zhu Q; Liang S; Martin L; Gasparini S; Ménez A; Vita C
    Biochemistry; 2002 Sep; 41(38):11488-94. PubMed ID: 12234192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cystine-stabilized alpha-helix: a common structural motif of ion-channel blocking neurotoxic peptides.
    Kobayashi Y; Takashima H; Tamaoki H; Kyogoku Y; Lambert P; Kuroda H; Chino N; Watanabe TX; Kimura T; Sakakibara S
    Biopolymers; 1991 Sep; 31(10):1213-20. PubMed ID: 1724185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide bond rearrangement during formation of the chorionic gonadotropin beta-subunit cystine knot in vivo.
    Wilken JA; Bedows E
    Biochemistry; 2004 May; 43(17):5109-18. PubMed ID: 15109270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New fungal defensin-like peptides provide evidence for fold change of proteins in evolution.
    Wu Y; Gao B; Zhu S
    Biosci Rep; 2017 Feb; 37(1):. PubMed ID: 27913751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides.
    Daly NL; Clark RJ; Craik DJ
    J Biol Chem; 2003 Feb; 278(8):6314-22. PubMed ID: 12482862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of disulfide bonds among the nine core 2 N-acetylglucosaminyltransferase-M cysteines conserved in the mucin beta6-N-acetylglucosaminyltransferase family.
    Singh J; Khan GA; Kinarsky L; Cheng H; Wilken J; Choi KH; Bedows E; Sherman S; Cheng PW
    J Biol Chem; 2004 Sep; 279(37):38969-77. PubMed ID: 15226299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1).
    Yang YS; Mitta G; Chavanieu A; Calas B; Sanchez JF; Roch P; Aumelas A
    Biochemistry; 2000 Nov; 39(47):14436-47. PubMed ID: 11087396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative folding of cystine-rich peptides vs regioselective cysteine pairing strategies.
    Moroder L; Besse D; Musiol HJ; Rudolph-Böhner S; Siedler F
    Biopolymers; 1996; 40(2):207-34. PubMed ID: 8785364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cystine knots in collagen folding and stability, part II. Conformational properties of (Pro-Hyp-Gly)n model trimers with N- and C-terminal collagen type III cystine knots.
    Barth D; Kyrieleis O; Frank S; Renner C; Moroder L
    Chemistry; 2003 Aug; 9(15):3703-14. PubMed ID: 12898697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Min-21 and min-23, the smallest peptides that fold like a cystine-stabilized beta-sheet motif: design, solution structure, and thermal stability.
    Heitz A; Le-Nguyen D; Chiche L
    Biochemistry; 1999 Aug; 38(32):10615-25. PubMed ID: 10441159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative folding of peptides with cystine-knot architectures: kinetic studies and optimization of folding conditions.
    Reinwarth M; Glotzbach B; Tomaszowski M; Fabritz S; Avrutina O; Kolmar H
    Chembiochem; 2013 Jan; 14(1):137-46. PubMed ID: 23229141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cystine knot structure of ion channel toxins and related polypeptides.
    Norton RS; Pallaghy PK
    Toxicon; 1998 Nov; 36(11):1573-83. PubMed ID: 9792173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A new alpha-helical motif in bioactive peptides--disulfide bridges between Cys-X-X-X-Cys and Cys-X-Cys].
    Kobayashi Y; Tamaoki H
    Seikagaku; 1990 Dec; 62(12):1500-6. PubMed ID: 2086691
    [No Abstract]   [Full Text] [Related]  

  • 17. Conformational study of endothelins and sarafotoxins with the cystine-stabilized helical motif by means of CD spectra.
    Tamaoki H; Kyogoku Y; Nakajima K; Sakakibara S; Hayashi M; Kobayashi Y
    Biopolymers; 1992 Apr; 32(4):353-7. PubMed ID: 1623130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The two cysteine-rich head domains of minicollagen from Hydra nematocysts differ in their cystine framework and overall fold despite an identical cysteine sequence pattern.
    Milbradt AG; Boulegue C; Moroder L; Renner C
    J Mol Biol; 2005 Dec; 354(3):591-600. PubMed ID: 16257007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assignment of disulfide bridges in the fusion glycoprotein of Sendai virus.
    Iwata S; Schmidt AC; Titani K; Suzuki M; Kido H; Gotoh B; Hamaguchi M; Nagai Y
    J Virol; 1994 May; 68(5):3200-6. PubMed ID: 8151783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cysteine-rich region of type VII collagen is a cystine knot with a new topology.
    Wegener H; Paulsen H; Seeger K
    J Biol Chem; 2014 Feb; 289(8):4861-9. PubMed ID: 24385431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.