These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 9749917)
1. Folding motifs induced and stabilized by distinct cystine frameworks. Tamaoki H; Miura R; Kusunoki M; Kyogoku Y; Kobayashi Y; Moroder L Protein Eng; 1998 Aug; 11(8):649-59. PubMed ID: 9749917 [TBL] [Abstract][Full Text] [Related]
2. The three-dimensional structure of an H-superfamily conotoxin reveals a granulin fold arising from a common ICK cysteine framework. Nielsen LD; Foged MM; Albert A; Bertelsen AB; Søltoft CL; Robinson SD; Petersen SV; Purcell AW; Olivera BM; Norton RS; Vasskog T; Safavi-Hemami H; Teilum K; Ellgaard L J Biol Chem; 2019 May; 294(22):8745-8759. PubMed ID: 30975904 [TBL] [Abstract][Full Text] [Related]
3. A novel endogenous inhibitor of phenoloxidase from Musca domestica has a cystine motif commonly found in snail and spider toxins. Daquinag AC; Sato T; Koda H; Takao T; Fukuda M; Shimonishi Y; Tsukamoto T Biochemistry; 1999 Feb; 38(7):2179-88. PubMed ID: 10026302 [TBL] [Abstract][Full Text] [Related]
4. Role of disulfide bonds in folding and activity of leiurotoxin I: just two disulfides suffice. Zhu Q; Liang S; Martin L; Gasparini S; Ménez A; Vita C Biochemistry; 2002 Sep; 41(38):11488-94. PubMed ID: 12234192 [TBL] [Abstract][Full Text] [Related]
5. The cystine-stabilized alpha-helix: a common structural motif of ion-channel blocking neurotoxic peptides. Kobayashi Y; Takashima H; Tamaoki H; Kyogoku Y; Lambert P; Kuroda H; Chino N; Watanabe TX; Kimura T; Sakakibara S Biopolymers; 1991 Sep; 31(10):1213-20. PubMed ID: 1724185 [TBL] [Abstract][Full Text] [Related]
6. Disulfide bond rearrangement during formation of the chorionic gonadotropin beta-subunit cystine knot in vivo. Wilken JA; Bedows E Biochemistry; 2004 May; 43(17):5109-18. PubMed ID: 15109270 [TBL] [Abstract][Full Text] [Related]
7. New fungal defensin-like peptides provide evidence for fold change of proteins in evolution. Wu Y; Gao B; Zhu S Biosci Rep; 2017 Feb; 37(1):. PubMed ID: 27913751 [TBL] [Abstract][Full Text] [Related]
8. Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides. Daly NL; Clark RJ; Craik DJ J Biol Chem; 2003 Feb; 278(8):6314-22. PubMed ID: 12482862 [TBL] [Abstract][Full Text] [Related]
9. Identification of disulfide bonds among the nine core 2 N-acetylglucosaminyltransferase-M cysteines conserved in the mucin beta6-N-acetylglucosaminyltransferase family. Singh J; Khan GA; Kinarsky L; Cheng H; Wilken J; Choi KH; Bedows E; Sherman S; Cheng PW J Biol Chem; 2004 Sep; 279(37):38969-77. PubMed ID: 15226299 [TBL] [Abstract][Full Text] [Related]
10. Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). Yang YS; Mitta G; Chavanieu A; Calas B; Sanchez JF; Roch P; Aumelas A Biochemistry; 2000 Nov; 39(47):14436-47. PubMed ID: 11087396 [TBL] [Abstract][Full Text] [Related]
12. The role of cystine knots in collagen folding and stability, part II. Conformational properties of (Pro-Hyp-Gly)n model trimers with N- and C-terminal collagen type III cystine knots. Barth D; Kyrieleis O; Frank S; Renner C; Moroder L Chemistry; 2003 Aug; 9(15):3703-14. PubMed ID: 12898697 [TBL] [Abstract][Full Text] [Related]
13. Min-21 and min-23, the smallest peptides that fold like a cystine-stabilized beta-sheet motif: design, solution structure, and thermal stability. Heitz A; Le-Nguyen D; Chiche L Biochemistry; 1999 Aug; 38(32):10615-25. PubMed ID: 10441159 [TBL] [Abstract][Full Text] [Related]
14. Oxidative folding of peptides with cystine-knot architectures: kinetic studies and optimization of folding conditions. Reinwarth M; Glotzbach B; Tomaszowski M; Fabritz S; Avrutina O; Kolmar H Chembiochem; 2013 Jan; 14(1):137-46. PubMed ID: 23229141 [TBL] [Abstract][Full Text] [Related]
15. The cystine knot structure of ion channel toxins and related polypeptides. Norton RS; Pallaghy PK Toxicon; 1998 Nov; 36(11):1573-83. PubMed ID: 9792173 [TBL] [Abstract][Full Text] [Related]
16. [A new alpha-helical motif in bioactive peptides--disulfide bridges between Cys-X-X-X-Cys and Cys-X-Cys]. Kobayashi Y; Tamaoki H Seikagaku; 1990 Dec; 62(12):1500-6. PubMed ID: 2086691 [No Abstract] [Full Text] [Related]
17. Conformational study of endothelins and sarafotoxins with the cystine-stabilized helical motif by means of CD spectra. Tamaoki H; Kyogoku Y; Nakajima K; Sakakibara S; Hayashi M; Kobayashi Y Biopolymers; 1992 Apr; 32(4):353-7. PubMed ID: 1623130 [TBL] [Abstract][Full Text] [Related]
18. The two cysteine-rich head domains of minicollagen from Hydra nematocysts differ in their cystine framework and overall fold despite an identical cysteine sequence pattern. Milbradt AG; Boulegue C; Moroder L; Renner C J Mol Biol; 2005 Dec; 354(3):591-600. PubMed ID: 16257007 [TBL] [Abstract][Full Text] [Related]
19. Assignment of disulfide bridges in the fusion glycoprotein of Sendai virus. Iwata S; Schmidt AC; Titani K; Suzuki M; Kido H; Gotoh B; Hamaguchi M; Nagai Y J Virol; 1994 May; 68(5):3200-6. PubMed ID: 8151783 [TBL] [Abstract][Full Text] [Related]
20. The cysteine-rich region of type VII collagen is a cystine knot with a new topology. Wegener H; Paulsen H; Seeger K J Biol Chem; 2014 Feb; 289(8):4861-9. PubMed ID: 24385431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]