BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9749924)

  • 1. Effects of the length of a glycine linker connecting the N-and C-termini of a circularly permuted dihydrofolate reductase.
    Iwakura M; Nakamura T
    Protein Eng; 1998 Aug; 11(8):707-13. PubMed ID: 9749924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circularly permuted dihydrofolate reductase of E. coli has functional activity and a destabilized tertiary structure.
    Protasova NYu ; Kireeva ML; Murzina NV; Murzin AG; Uversky VN; Gryaznova OI; Gudkov AT
    Protein Eng; 1994 Nov; 7(11):1373-7. PubMed ID: 7700869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fully active variant of dihydrofolate reductase with a circularly permuted sequence.
    Buchwalder A; Szadkowski H; Kirschner K
    Biochemistry; 1992 Feb; 31(6):1621-30. PubMed ID: 1737018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of point mutations at the flexible loop glycine-67 of Escherichia coli dihydrofolate reductase on its stability and function.
    Ohmae E; Iriyama K; Ichihara S; Gekko K
    J Biochem; 1996 Apr; 119(4):703-10. PubMed ID: 8743572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial duplication of the R67 dihydrofolate reductase gene to create protein asymmetry. Effects on protein activity and folding.
    Zhuang P; Yin M; Holland JC; Peterson CB; Howell EE
    J Biol Chem; 1993 Oct; 268(30):22672-9. PubMed ID: 8226776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: the altered structure of a mutant enzyme may form the basis of its diminished catalytic performance.
    Swanwick RS; Shrimpton PJ; Allemann RK
    Biochemistry; 2004 Apr; 43(14):4119-27. PubMed ID: 15065854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the role of chain connectivity on the stability and structure of dihydrofolate reductase from E. coli: fragment complementation and circular permutation reveal stable, alternatively folded forms.
    Smith VF; Matthews CR
    Protein Sci; 2001 Jan; 10(1):116-28. PubMed ID: 11266600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In search of circular permuted variants of Escherichia coli dihydrofolate reductase.
    Iwakura M
    Biosci Biotechnol Biochem; 1998 Apr; 62(4):778-81. PubMed ID: 9614709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular permutation of granulocyte colony-stimulating factor.
    Feng Y; Minnerly JC; Zurfluh LL; Joy WD; Hood WF; Abegg AL; Grabbe ES; Shieh JJ; Thurman TL; McKearn JP; McWherter CA
    Biochemistry; 1999 Apr; 38(14):4553-63. PubMed ID: 10194377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase.
    Ohmae E; Sasaki Y; Gekko K
    J Biochem; 2001 Sep; 130(3):439-47. PubMed ID: 11530021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circularly permuted dihydrofolate reductase possesses all the properties of the molten globule state, but can resume functional tertiary structure by interaction with its ligands.
    Uversky VN; Kutyshenko VP; Protasova NYu ; Rogov VV; Vassilenko KS; Gudkov AT
    Protein Sci; 1996 Sep; 5(9):1844-51. PubMed ID: 8880908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a dual chain pseudotetrameric chicken avidin by combining two circularly permuted avidins.
    Nordlund HR; Laitinen OH; Hytönen VP; Uotila ST; Porkka E; Kulomaa MS
    J Biol Chem; 2004 Aug; 279(35):36715-9. PubMed ID: 15131113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of point mutations at the flexible loop alanine-145 of Escherichia coli dihydrofolate reductase on its stability and function.
    Ohmae E; Ishimura K; Iwakura M; Gekko K
    J Biochem; 1998 May; 123(5):839-46. PubMed ID: 9562614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonadditive effects of double mutations at the flexible loops, glycine-67 and glycine-121, of Escherichia coli dihydrofolate reductase on its stability and function.
    Ohmae E; Iriyama K; Ichihara S; Gekko K
    J Biochem; 1998 Jan; 123(1):33-41. PubMed ID: 9504406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of circular permutations on transient partial unfolding in proteins.
    Chen C; Yun JH; Kim JH; Park C
    Protein Sci; 2016 Aug; 25(8):1483-91. PubMed ID: 27164316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a synthetic gene for an R-plasmid-encoded dihydrofolate reductase and studies on the role of the N-terminus in the protein.
    Reece LJ; Nichols R; Ogden RC; Howell EE
    Biochemistry; 1991 Nov; 30(45):10895-904. PubMed ID: 1932013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and reversibility of thermal denaturation are greatly improved by limiting terminal flexibility of Escherichia coli dihydrofolate reductase.
    Iwakura M; Honda S
    J Biochem; 1996 Mar; 119(3):414-20. PubMed ID: 8830033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological mutation of Escherichia coli dihydrofolate reductase.
    Iwakura M; Takenawa T; Nakamura T
    J Biochem; 1998 Oct; 124(4):769-77. PubMed ID: 9756622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains.
    Yang YR; Schachman HK
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11980-4. PubMed ID: 8265657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles.
    Ionescu RM; Smith VF; O'Neill JC; Matthews CR
    Biochemistry; 2000 Aug; 39(31):9540-50. PubMed ID: 10924151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.