These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 9749931)
1. Bremazocine recognizes the difference in four amino acid residues to discriminate between a nociceptin/orphanin FQ receptor and opioid receptors. Seki T; Minami M; Kimura C; Uehara T; Nakagawa T; Satoh M Jpn J Pharmacol; 1998 Aug; 77(4):301-6. PubMed ID: 9749931 [TBL] [Abstract][Full Text] [Related]
2. Creating a functional opioid alkaloid binding site in the orphanin FQ receptor through site-directed mutagenesis. Meng F; Ueda Y; Hoversten MT; Taylor LP; Reinscheid RK; Monsma FJ; Watson SJ; Civelli O; Akil H Mol Pharmacol; 1998 Apr; 53(4):772-7. PubMed ID: 9547370 [TBL] [Abstract][Full Text] [Related]
3. Determinants of ligand selectivity at the kappa-receptor based on the structure of the orphanin FQ receptor. Owens CE; Akil H J Pharmacol Exp Ther; 2002 Mar; 300(3):992-9. PubMed ID: 11861808 [TBL] [Abstract][Full Text] [Related]
4. Moving from the orphanin FQ receptor to an opioid receptor using four point mutations. Meng F; Taylor LP; Hoversten MT; Ueda Y; Ardati A; Reinscheid RK; Monsma FJ; Watson SJ; Civelli O; Akil H J Biol Chem; 1996 Dec; 271(50):32016-20. PubMed ID: 8943250 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the amino acid residues in the sixth transmembrane domains accessible in the binding-site crevices of mu, delta, and kappa opioid receptors. Xu W; Li J; Chen C; Huang P; Weinstein H; Javitch JA; Shi L; de Riel JK; Liu-Chen LY Biochemistry; 2001 Jul; 40(27):8018-29. PubMed ID: 11434771 [TBL] [Abstract][Full Text] [Related]
6. Studies on mu and delta opioid receptor selectivity utilizing chimeric and site-mutagenized receptors. Wang WW; Shahrestanifar M; Jin J; Howells RD Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12436-40. PubMed ID: 8618916 [TBL] [Abstract][Full Text] [Related]
7. The conserved cysteine 7.38 residue is differentially accessible in the binding-site crevices of the mu, delta, and kappa opioid receptors. Xu W; Chen C; Huang P; Li J; de Riel JK; Javitch JA; Liu-Chen LY Biochemistry; 2000 Nov; 39(45):13904-15. PubMed ID: 11076532 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological characterization of the binding of [3H]bremazocine in guinea-pig brain: evidence for multiplicity of the kappa-opioid receptors. Tiberi M; Magnan J Can J Physiol Pharmacol; 1989 Oct; 67(10):1336-44. PubMed ID: 2558788 [TBL] [Abstract][Full Text] [Related]
9. Characterization of kappa opioid binding using dynorphin A1-13 and U69,593 in the rat brain. Devlin T; Shoemaker WJ J Pharmacol Exp Ther; 1990 May; 253(2):749-59. PubMed ID: 1971019 [TBL] [Abstract][Full Text] [Related]
11. Pharmacological characterization of a nociceptin receptor from zebrafish (Danio rerio). Rivas-Boyero AA; Herrero-Turrión MJ; Gonzalez-Nunez V; Sánchez-Simón FM; Barreto-Valer K; Rodríguez RE J Mol Endocrinol; 2011 Apr; 46(2):111-23. PubMed ID: 21247980 [TBL] [Abstract][Full Text] [Related]
12. DAMGO recognizes four residues in the third extracellular loop to discriminate between mu- and kappa-opioid receptors. Seki T; Minami M; Nakagawa T; Ienaga Y; Morisada A; Satoh M Eur J Pharmacol; 1998 Jun; 350(2-3):301-10. PubMed ID: 9696421 [TBL] [Abstract][Full Text] [Related]
13. Localization of kappa opioid receptor binding sites in human forebrain using [3H]U69,593: comparison with [3H]bremazocine. Quirion R; Pilapil C; Magnan J Cell Mol Neurobiol; 1987 Sep; 7(3):303-7. PubMed ID: 2830975 [TBL] [Abstract][Full Text] [Related]
14. In vivo binding of benzomorphans to mu, delta and kappa opioid receptors: comparison with urine output in the rat. Richards ML; Sadée W J Pharmacol Exp Ther; 1985 May; 233(2):425-32. PubMed ID: 2987482 [TBL] [Abstract][Full Text] [Related]
15. Pharmacological and anatomical evidence of selective mu, delta, and kappa opioid receptor binding in rat brain. Mansour A; Lewis ME; Khachaturian H; Akil H; Watson SJ Brain Res; 1986 Dec; 399(1):69-79. PubMed ID: 3026574 [TBL] [Abstract][Full Text] [Related]
16. Complete knockout of the nociceptin/orphanin FQ receptor in the rat does not induce compensatory changes in mu, delta and kappa opioid receptors. Homberg JR; Mul JD; de Wit E; Cuppen E Neuroscience; 2009 Sep; 163(1):308-15. PubMed ID: 19527777 [TBL] [Abstract][Full Text] [Related]
17. Control of opiate receptor number in vivo: simultaneous kappa-receptor down-regulation and mu-receptor up-regulation following chronic agonist/antagonist treatment. Morris BJ; Herz A Neuroscience; 1989; 29(2):433-42. PubMed ID: 2542839 [TBL] [Abstract][Full Text] [Related]
18. Distinct mechanisms for activation of the opioid receptor-like 1 and kappa-opioid receptors by nociceptin and dynorphin A. Mollereau C; Mouledous L; Lapalu S; Cambois G; Moisand C; Butour JL; Meunier JC Mol Pharmacol; 1999 Feb; 55(2):324-31. PubMed ID: 9927625 [TBL] [Abstract][Full Text] [Related]
19. Multiplicity of kappa opioid receptor binding in the rat cardiac sarcolemma. Zhang WM; Jin WQ; Wong TM J Mol Cell Cardiol; 1996 Jul; 28(7):1547-54. PubMed ID: 8841942 [TBL] [Abstract][Full Text] [Related]
20. Guanine nucleotide-binding protein-coupled and -uncoupled states of opioid receptors and their relevance to the determination of subtypes. Richardson A; Demoliou-Mason C; Barnard EA Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10198-202. PubMed ID: 1332034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]