These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9750216)

  • 1. Structure-based prediction of binding affinities and molecular design of peptide ligands.
    Luque I; Freire E
    Methods Enzymol; 1998; 295():100-27. PubMed ID: 9750216
    [No Abstract]   [Full Text] [Related]  

  • 2. X-ray structures of retroviral proteases and their inhibitor-bound complexes.
    Ringe D
    Methods Enzymol; 1994; 241():157-77. PubMed ID: 7854176
    [No Abstract]   [Full Text] [Related]  

  • 3. Thermodynamics and proton uptake for pepstatin binding to retroviral and eukaryotic aspartic proteases.
    Xie D; Gulnik S; Collins L; Gustchina E; Bhat TN; Erickson JW
    Adv Exp Med Biol; 1998; 436():381-6. PubMed ID: 9561245
    [No Abstract]   [Full Text] [Related]  

  • 4. HIV protease (HIV PR) inhibitor structure-activity-selectivity, and active site molecular modeling of high affinity Leu [CH(OH)CH2]Val modified viral and nonviral substrate analogs.
    Sawyer TK; Staples DJ; Liu L; Tomasselli AG; Hui JO; O'Connell K; Schostarez H; Hester JB; Moon J; Howe WJ
    Int J Pept Protein Res; 1992; 40(3-4):274-81. PubMed ID: 1478785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in automated docking applied to human immunodeficiency virus type 1 protease.
    Miller MD; Sheridan RP; Kearsley SK; Underwood DJ
    Methods Enzymol; 1994; 241():354-70. PubMed ID: 7854188
    [No Abstract]   [Full Text] [Related]  

  • 6. Relative binding free energies of peptide inhibitors of HIV-1 protease: the influence of the active site protonation state.
    Chen X; Tropsha A
    J Med Chem; 1995 Jan; 38(1):42-8. PubMed ID: 7837238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystallographic structure of the protease from human immunodeficiency virus type 2 with two synthetic peptidic transition state analog inhibitors.
    Mulichak AM; Hui JO; Tomasselli AG; Heinrikson RL; Curry KA; Tomich CS; Thaisrivongs S; Sawyer TK; Watenpaugh KD
    J Biol Chem; 1993 Jun; 268(18):13103-9. PubMed ID: 8514751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of symmetry-based, peptidomimetic inhibitors of human immunodeficiency virus protease.
    Kempf DJ
    Methods Enzymol; 1994; 241():334-54. PubMed ID: 7854187
    [No Abstract]   [Full Text] [Related]  

  • 9. Potency comparison of peptidomimetic inhibitors against HIV-1 and HIV-2 proteinases: design of equipotent lead compounds.
    Weber J; Majer P; Litera J; Urban J; Soucek M; Vondrásek J; Konvalinka J; Novek P; Sedlácek J; Strop P; Kräusslich HG; Pichová I
    Arch Biochem Biophys; 1997 May; 341(1):62-9. PubMed ID: 9143353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonspecific electrostatic binding of substrates and inhibitors to porcine pepsin.
    Kuzmic P; Sun CQ; Zhao ZC; Rich DH
    Adv Exp Med Biol; 1991; 306():75-86. PubMed ID: 1812761
    [No Abstract]   [Full Text] [Related]  

  • 11. Computational titration analysis of a multiprotic HIV-1 protease-ligand complex.
    Spyrakis F; Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE
    J Am Chem Soc; 2004 Sep; 126(38):11764-5. PubMed ID: 15382890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis and structure-activity study of shorter hexa peptide analogues as HIV-1 protease inhibitors.
    Narendra Babu SN; Rangappa KS
    Bioorg Med Chem; 2008 Jan; 16(2):874-80. PubMed ID: 17981043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mean field model of ligand-protein interactions: implications for the structural assessment of human immunodeficiency virus type 1 protease complexes and receptor-specific binding.
    Verkhivker GM; Rejto PA
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):60-4. PubMed ID: 8552675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of rhizopuspepsin/inhibitor complexes.
    Parris KD; Hoover DJ; Davies DR
    Adv Exp Med Biol; 1991; 306():217-31. PubMed ID: 1812709
    [No Abstract]   [Full Text] [Related]  

  • 15. Structure-based ligand design by dynamically assembling molecular building blocks at binding site.
    Liu H; Duan Z; Luo Q; Shi Y
    Proteins; 1999 Sep; 36(4):462-70. PubMed ID: 10450088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: direct measurement of the protonation states of the catalytic aspartic acid residues.
    Xie D; Gulnik S; Collins L; Gustchina E; Suvorov L; Erickson JW
    Biochemistry; 1997 Dec; 36(51):16166-72. PubMed ID: 9405050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mechanism of action of aspartic proteases. III. Conformational characteristics of HIV-1 protease inhibitor JG-365].
    Popov ME; Kashparov IV; Rumsh LD; Popov EM
    Bioorg Khim; 1999 Jun; 25(6):418-22. PubMed ID: 10505229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of resistance to HIV-1 protease inhibition: a plausible hypothesis.
    Luque I; Todd MJ; Gómez J; Semo N; Freire E
    Biochemistry; 1998 Apr; 37(17):5791-7. PubMed ID: 9558312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of inhibitor binding to feline and human immunodeficiency virus proteases: structure-based drug design and the resistance problem.
    Dunn BM; Pennington MW; Frase DC; Nash K
    Biopolymers; 1999; 51(1):69-77. PubMed ID: 10380354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of cathepsin D by tripeptides containing statine analogs.
    Bessodes M; Antonakis K; Herscovici J; Garcia M; Rochefort H; Capony F; Lelièvre Y; Scherman D
    Biochem Pharmacol; 1999 Jul; 58(2):329-33. PubMed ID: 10423175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.