These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9750224)

  • 1. Prediction of binding energetics from structure using empirical parameterization.
    Baker BM; Murphy KP
    Methods Enzymol; 1998; 295():294-315. PubMed ID: 9750224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization.
    Henriques DA; Ladbury JE; Jackson RM
    Protein Sci; 2000 Oct; 9(10):1975-85. PubMed ID: 11106171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural parameterization of the binding enthalpy of small ligands.
    Luque I; Freire E
    Proteins; 2002 Nov; 49(2):181-90. PubMed ID: 12210999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique and independent parameters (UIP) formulation for thermodynamic models of complex protein-ligand systems.
    Gutheil WG; McKenna CE
    Biophys Chem; 1992 Dec; 45(2):171-9. PubMed ID: 1286150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of Cro protein-DNA interactions.
    Takeda Y; Ross PD; Mudd CP
    Proc Natl Acad Sci U S A; 1992 Sep; 89(17):8180-4. PubMed ID: 1518844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry.
    Baker BM; Murphy KP
    Biophys J; 1996 Oct; 71(4):2049-55. PubMed ID: 8889179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the binding energy for small molecules, peptides and proteins.
    Schapira M; Totrov M; Abagyan R
    J Mol Recognit; 1999; 12(3):177-90. PubMed ID: 10398408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the calculation of binding free energies using continuum methods: application to MHC class I protein-peptide interactions.
    Froloff N; Windemuth A; Honig B
    Protein Sci; 1997 Jun; 6(6):1293-301. PubMed ID: 9194189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM
    Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consistency in structural energetics of protein folding and peptide recognition.
    Zhang C; Cornette JL; Delisi C
    Protein Sci; 1997 May; 6(5):1057-64. PubMed ID: 9144777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the relationship of thermodynamic parameters with the buried surface area in protein-ligand complex formation.
    Singha NC; Surolia N; Surolia A
    Biosci Rep; 1996 Feb; 16(1):1-10. PubMed ID: 8861535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional differential scanning calorimetry: simultaneous resolution of intrinsic protein structural energetics and ligand binding interactions by global linkage analysis.
    Straume M; Freire E
    Anal Biochem; 1992 Jun; 203(2):259-68. PubMed ID: 1416022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the "two-pronged plug two-holed socket" model for the mechanism of binding of the Src SH2 domain to phosphotyrosyl peptides: a thermodynamic study.
    Bradshaw JM; Grucza RA; Ladbury JE; Waksman G
    Biochemistry; 1998 Jun; 37(25):9083-90. PubMed ID: 9636054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design.
    Palencia A; Cobos ES; Mateo PL; Martínez JC; Luque I
    J Mol Biol; 2004 Feb; 336(2):527-37. PubMed ID: 14757063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural energetics of protein folding and binding.
    Edgcomb SP; Murphy KP
    Curr Opin Biotechnol; 2000 Feb; 11(1):62-6. PubMed ID: 10679345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The high-resolution NMR structure of the R21A Spc-SH3:P41 complex: understanding the determinants of binding affinity by comparison with Abl-SH3.
    Casares S; Ab E; Eshuis H; Lopez-Mayorga O; van Nuland NA; Conejero-Lara F
    BMC Struct Biol; 2007 Apr; 7():22. PubMed ID: 17407569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of drug-DNA interactions.
    Chaires JB
    Biopolymers; 1997; 44(3):201-15. PubMed ID: 9591476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-Dependent Relationships between Protein Stability and Thermal Unfolding Temperature Have Important Implications for Analysis of Protein Energetics and High-Throughput Assays of Protein-Ligand Interactions.
    Watson MD; Monroe J; Raleigh DP
    J Phys Chem B; 2018 May; 122(21):5278-5285. PubMed ID: 28806087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of ligand binding to trp repressor.
    Jin L; Yang J; Carey J
    Biochemistry; 1993 Jul; 32(28):7302-9. PubMed ID: 8343520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.