These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 9750273)
1. The use of a ribosomal RNA targeted oligonucleotide probe for fluorescent labelling of viable Cryptosporidium parvum oocysts. Vesey G; Ashbolt N; Fricker EJ; Deere D; Williams KL; Veal DA; Dorsch M J Appl Microbiol; 1998 Sep; 85(3):429-40. PubMed ID: 9750273 [TBL] [Abstract][Full Text] [Related]
2. Rapid method for fluorescent in situ ribosomal RNA labelling of Cryptosporidium parvum. Deere D; Vesey G; Milner M; Williams K; Ashbolt N; Veal D J Appl Microbiol; 1998 Nov; 85(5):807-18. PubMed ID: 9830116 [TBL] [Abstract][Full Text] [Related]
3. Identification and determination of the viability of Giardia lamblia cysts and Cryptosporidium parvum and Cryptosporidium hominis oocysts in human fecal and water supply samples by fluorescent in situ hybridization (FISH) and monoclonal antibodies. Lemos V; Graczyk TK; Alves M; Lobo ML; Sousa MC; Antunes F; Matos O Parasitol Res; 2005 Dec; 98(1):48-53. PubMed ID: 16261356 [TBL] [Abstract][Full Text] [Related]
4. Direct counting of Cryptosporidium parvum oocysts using fluorescence in situ hybridization on a membrane filter. Taguchi T; Shinozaki Y; Takeyama H; Haraguchi S; Yoshino M; Kaneko M; Ishimori Y; Matsunaga T J Microbiol Methods; 2006 Nov; 67(2):373-80. PubMed ID: 16793153 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of fluorochromes for flow cytometric detection of Cryptosporidium parvum oocysts labelled by fluorescent in situ hybridization. Deere D; Vesey G; Ashbolt N; Davies KA; Williams KL; Veal D Lett Appl Microbiol; 1998 Dec; 27(6):352-6. PubMed ID: 9871354 [TBL] [Abstract][Full Text] [Related]
6. Determination of Cryptosporidium parvum oocyst viability by fluorescence in situ hybridization using a ribosomal RNA-directed probe. Smith JJ; Gunasekera TS; Barardi CR; Veal D; Vesey G J Appl Microbiol; 2004; 96(2):409-17. PubMed ID: 14723702 [TBL] [Abstract][Full Text] [Related]
7. Species-specific, nested PCR-restriction fragment length polymorphism detection of single Cryptosporidium parvum oocysts. Sturbaum GD; Reed C; Hoover PJ; Jost BH; Marshall MM; Sterling CR Appl Environ Microbiol; 2001 Jun; 67(6):2665-8. PubMed ID: 11375178 [TBL] [Abstract][Full Text] [Related]
8. Immunoassay for viable Cryptosporidium parvum oocysts in turbid environmental water samples. Call JL; Arrowood M; Xie LT; Hancock K; Tsang VC J Parasitol; 2001 Feb; 87(1):203-10. PubMed ID: 11227892 [TBL] [Abstract][Full Text] [Related]
9. Real-time nucleic acid sequence-based amplification (NASBA) assay targeting MIC1 for detection of Cryptosporidium parvum and Cryptosporidium hominis oocysts. Hønsvall BK; Robertson LJ Exp Parasitol; 2017 Jan; 172():61-67. PubMed ID: 27998735 [TBL] [Abstract][Full Text] [Related]
10. Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum. Lee LY; Ong SL; Hu JY; Ng WJ; Feng Y; Tan X; Wong SW Appl Environ Microbiol; 2004 Oct; 70(10):5732-6. PubMed ID: 15466507 [TBL] [Abstract][Full Text] [Related]
11. Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples. Yang R; Murphy C; Song Y; Ng-Hublin J; Estcourt A; Hijjawi N; Chalmers R; Hadfield S; Bath A; Gordon C; Ryan U Exp Parasitol; 2013 Sep; 135(1):142-7. PubMed ID: 23838581 [TBL] [Abstract][Full Text] [Related]
12. Induction of folds or sutures on the walls of Cryptosporidium parvum oocysts and their importance as a diagnostic feature. Robertson LJ; Campbell AT; Smith HV Appl Environ Microbiol; 1993 Aug; 59(8):2638-41. PubMed ID: 8368850 [TBL] [Abstract][Full Text] [Related]
13. Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts. Fontaine M; Guillot E FEMS Microbiol Lett; 2003 Sep; 226(2):237-43. PubMed ID: 14553917 [TBL] [Abstract][Full Text] [Related]
14. Detection of Cryptosporidium parvum and Giardia lamblia carried by synanthropic flies by combined fluorescent in situ hybridization and a monoclonal antibody. Graczyk TK; Grimes BH; Knight R; Da Silva AJ; Pieniazek NJ; Veal DA Am J Trop Med Hyg; 2003 Feb; 68(2):228-32. PubMed ID: 12641416 [TBL] [Abstract][Full Text] [Related]
15. Immunomagnetic capture PCR to detect viable Cryptosporidium parvum oocysts from environmental samples. Deng MQ; Cliver DO; Mariam TW Appl Environ Microbiol; 1997 Aug; 63(8):3134-8. PubMed ID: 9251200 [TBL] [Abstract][Full Text] [Related]
16. Detection and species identification of Cryptosporidium oocysts using a system based on PCR and endonuclease restriction. Awad-el-Kariem FM; Warhurst DC; McDonald V Parasitology; 1994 Jul; 109 ( Pt 1)():19-22. PubMed ID: 8058364 [TBL] [Abstract][Full Text] [Related]
17. Amplification-free detection of Cryptosporidium parvum nucleic acids with the use of DNA/RNA-directed gold nanoparticle assemblies. Weigum SE; Castellanos-Gonzalez A; White AC; Richards-Kortum R J Parasitol; 2013 Oct; 99(5):923-6. PubMed ID: 23617738 [TBL] [Abstract][Full Text] [Related]
18. Detection of Cryptosporidium parvum oocysts by dot-blotting using monoclonal antibodies to Cryptosporidium parvum virus 40-kDa capsid protein. Jenkins MC; O'Brien CN; Trout JM J Parasitol; 2008 Feb; 94(1):94-8. PubMed ID: 18372626 [TBL] [Abstract][Full Text] [Related]
19. Genotyping of single Cryptosporidium oocysts in sewage by semi-nested PCR and direct sequencing. Hashimoto A; Sugimoto H; Morita S; Hirata T Water Res; 2006 Jul; 40(13):2527-32. PubMed ID: 16790257 [TBL] [Abstract][Full Text] [Related]
20. Comparison of in vitro viability methods for Cryptosporidium oocysts. Vande Burgt NH; Auer A; Zintl A Exp Parasitol; 2018 Apr; 187():30-36. PubMed ID: 29518450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]