These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9750329)

  • 1. Degradation of 2,4,6-trichlorophenol by a specialized organism and by indigenous soil microflora: bioaugmentation and self-remediability for soil restoration.
    Andreoni V; Baggi G; Colombo M; Cavalca L; Zangrossi M; Bernasconi S
    Lett Appl Microbiol; 1998 Aug; 27(2):86-92. PubMed ID: 9750329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of trichlorophenols by Alcaligenes eutrophus JMP134.
    Clément P; Matus V; Cárdenas L; González B
    FEMS Microbiol Lett; 1995 Mar; 127(1-2):51-5. PubMed ID: 7737484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A previously unexposed forest soil microbial community degrades high levels of the pollutant 2,4,6-trichlorophenol.
    Sánchez MA; Vásquez M; González B
    Appl Environ Microbiol; 2004 Dec; 70(12):7567-70. PubMed ID: 15574963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation kinetics of 2,4,6-trichlorophenol by an acclimated mixed microbial culture under aerobic conditions.
    Snyder CJ; Asghar M; Scharer JM; Legge RL
    Biodegradation; 2006 Dec; 17(6):535-44. PubMed ID: 16489415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene.
    Carvalho MF; Alves CC; Ferreira MI; De Marco P; Castro PM
    Appl Environ Microbiol; 2002 Jan; 68(1):102-5. PubMed ID: 11772615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of prochloraz and 2,4,6-trichlorophenol by environmental bacterial strains.
    Bock C; Kroppenstedt RM; Schmidt U; Diekmann H
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):257-62. PubMed ID: 8920198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in TcpA gene frequency explain 2,4,6-trichlorophenol degradation in mesocosms.
    Sinkkonen A; Ollila S; Romantschuk M
    J Environ Sci Health B; 2014; 49(10):756-9. PubMed ID: 25065827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of chlorophenols on microbiota of an unpolluted acidic soil: microbial resistance and biodegradation.
    Caliz J; Vila X; Martí E; Sierra J; Cruañas R; Garau MA; Montserrat G
    FEMS Microbiol Ecol; 2011 Oct; 78(1):150-64. PubMed ID: 21426365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival of luxAB-marked Alcaligenes eutrophus H850 in PCB-contaminated soil and sediment.
    Van Dyke MI; Lee H; Trevors JT
    J Chem Technol Biotechnol; 1996 Feb; 65(2):115-22. PubMed ID: 8672293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review.
    Cycoń M; Mrozik A; Piotrowska-Seget Z
    Chemosphere; 2017 Apr; 172():52-71. PubMed ID: 28061345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular diagnostics for polychlorinated biphenyl degradation in contaminated soils.
    Layton AC; Lajoie CA; Easter JP; Jernigan R; Beck MJ; Sayler GS
    Ann N Y Acad Sci; 1994 May; 721():407-22. PubMed ID: 8010689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial biodegradation of 2,4,5-trichlorophenoxyacetic acid and chlorophenols.
    Karns JS; Kilbane JJ; Chatterjee DK; Chakrabarty AM
    Basic Life Sci; 1984; 28():3-21. PubMed ID: 6704076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Gordonia sp JAAS1 in biodegradation of chlorpyrifos and its hydrolysing metabolite 3,5,6-trichloro-2-pyridinol.
    Abraham J; Shanker A; Silambarasan S
    Lett Appl Microbiol; 2013 Dec; 57(6):510-6. PubMed ID: 23909785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escravos light crude oil degrading potentials of axenic and mixed bacterial cultures.
    Odjadjare EE; Ajisebutu SO; Igbinosa EO; Aiyegoro OA; Trejo-Hernandez MR; Okoh AI
    J Gen Appl Microbiol; 2008 Oct; 54(5):277-84. PubMed ID: 19029769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of soils co-contaminated with heavy metals and 2,4,5-trichlorophenol by fruiting body of Clitocybe maxima.
    Liu H; Guo S; Jiao K; Hou J; Xie H; Xu H
    J Hazard Mater; 2015 Aug; 294():121-7. PubMed ID: 25863026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition for oxygen by iron and 2,4,6-trichlorophenol oxidizing bacteria in boreal groundwater.
    Langwaldt JH; Puhakka JA
    Water Res; 2003 Mar; 37(6):1378-84. PubMed ID: 12598200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds.
    Mrozik A; Piotrowska-Seget Z
    Microbiol Res; 2010 Jul; 165(5):363-75. PubMed ID: 19735995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microbiota of an unpolluted calcareous soil faces up chlorophenols: Evidences of resistant strains with potential for bioremediation.
    Caliz J; Vila X; Martí E; Sierra J; Nordgren J; Lindgren PE; Bañeras L; Montserrat G
    Chemosphere; 2011 Mar; 83(2):104-16. PubMed ID: 21295817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of 4-chlorophenol by adsorptive immobilized Alcaligenes sp. A 7-2 in soil.
    Balfanz J; Rehm HJ
    Appl Microbiol Biotechnol; 1991 Aug; 35(5):662-8. PubMed ID: 1367580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols.
    Kiyohara H; Hatta T; Ogawa Y; Kakuda T; Yokoyama H; Takizawa N
    Appl Environ Microbiol; 1992 Apr; 58(4):1276-83. PubMed ID: 1599247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.