These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 9751133)

  • 21. [Mutual influences of upper and lower extrimities during cyclic movements].
    Solopova IA; Selionov VA; Zhvanskiĭ DS; Grishin AA
    Fiziol Cheloveka; 2011; 37(4):55-64. PubMed ID: 21950087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Respiratory responses to voluntary and reflexly-induced stepping movements in normal subjects and spinal patients.
    Isaev GG; Gerasimenko YP; Selionov VA; Kartashova NA
    J Physiol Pharmacol; 2004 Sep; 55 Suppl 3():77-82. PubMed ID: 15611596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loading the limb during rhythmic leg movements lengthens the duration of both flexion and extension in human infants.
    Musselman KE; Yang JF
    J Neurophysiol; 2007 Feb; 97(2):1247-57. PubMed ID: 17151226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhythmic wrist movements facilitate the soleus H-reflex and non-voluntary air-stepping in humans.
    Solopova IA; Selionov VA; Blinov EO; Zhvansky DS; Ivanenko YP
    Neurosci Lett; 2017 Jan; 638():39-45. PubMed ID: 27931775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complex muscle vibration patterns to induce gait-like lower-limb movements: proof of concept.
    Duclos C; Kemlin C; Lazert D; Gagnon D; Dyer JO; Forget R
    J Rehabil Res Dev; 2014; 51(2):245-51. PubMed ID: 24933722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phasic activity in the human erector spinae during repetitive hand movements.
    Zedka M; Prochazka A
    J Physiol; 1997 Nov; 504 ( Pt 3)(Pt 3):727-34. PubMed ID: 9401978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How is the normal locomotor program modified to produce backward walking?
    Thorstensson A
    Exp Brain Res; 1986; 61(3):664-8. PubMed ID: 3956625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons.
    Kawashima N; Nozaki D; Abe MO; Akai M; Nakazawa K
    J Neurophysiol; 2005 Feb; 93(2):777-85. PubMed ID: 15385590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Air-stepping in the neonatal mouse: a powerful tool for analyzing early stages of rhythmic limb movement development.
    Mistretta OC; Wood RL; English AW; Alvarez FJ
    J Neurophysiol; 2024 Feb; 131(2):321-337. PubMed ID: 38198656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Obstacle avoidance locomotor tasks: adaptation, memory and skill transfer.
    Kloter E; Dietz V
    Eur J Neurosci; 2012 May; 35(10):1613-21. PubMed ID: 22506969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forward and backward arm cycling are regulated by equivalent neural mechanisms.
    Zehr EP; Hundza SR
    J Neurophysiol; 2005 Jan; 93(1):633-40. PubMed ID: 15317838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of human cutaneous reflexes during rhythmic cyclical arm movement.
    Zehr EP; Chua R
    Exp Brain Res; 2000 Nov; 135(2):241-50. PubMed ID: 11131509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury.
    Dobkin BH; Harkema S; Requejo P; Edgerton VR
    J Neurol Rehabil; 1995; 9(4):183-90. PubMed ID: 11539274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precocious locomotor behavior begins in the egg: development of leg muscle patterns for stepping in the chick.
    Ryu YU; Bradley NS
    PLoS One; 2009 Jul; 4(7):e6111. PubMed ID: 19578536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A neuromechanical model explaining forward and backward stepping in the stick insect.
    Tóth TI; Knops S; Daun-Gruhn S
    J Neurophysiol; 2012 Jun; 107(12):3267-80. PubMed ID: 22402652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two types of motor modulation underlying human stepping evoked by spinal cord electrical stimulation (SCES).
    Shapkova EY; Schomburg ED
    Acta Physiol Pharmacol Bulg; 2001; 26(3):155-7. PubMed ID: 11695529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system.
    Bässler U; Sauer AE; Büschges A
    J Neurobiol; 2003 Aug; 56(2):125-38. PubMed ID: 12838578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Could different directions of infant stepping be controlled by the same locomotor central pattern generator?
    Lamb T; Yang JF
    J Neurophysiol; 2000 May; 83(5):2814-24. PubMed ID: 10805679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amplitude modulation of the soleus H reflex in the human during active and passive stepping movements.
    Brooke JD; Cheng J; Misiaszek JE; Lafferty K
    J Neurophysiol; 1995 Jan; 73(1):102-11. PubMed ID: 7714556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.