These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 9751785)
21. Monkey prefrontal neuronal activity coding the forthcoming saccade in an oculomotor delayed matching-to-sample task. Hasegawa R; Sawaguchi T; Kubota K J Neurophysiol; 1998 Jan; 79(1):322-33. PubMed ID: 9425201 [TBL] [Abstract][Full Text] [Related]
22. Frontal eye field activity preceding aurally guided saccades. Russo GS; Bruce CJ J Neurophysiol; 1994 Mar; 71(3):1250-3. PubMed ID: 8201415 [TBL] [Abstract][Full Text] [Related]
23. Supplementary eye field: representation of saccades and relationship between neural response fields and elicited eye movements. Russo GS; Bruce CJ J Neurophysiol; 2000 Nov; 84(5):2605-21. PubMed ID: 11068002 [TBL] [Abstract][Full Text] [Related]
24. Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. Noda H; Fujikado T J Neurophysiol; 1987 Aug; 58(2):359-78. PubMed ID: 3655873 [TBL] [Abstract][Full Text] [Related]
25. The effects of microstimulation of the dorsomedial frontal cortex on saccade latency. Yang SN; Heinen SJ; Missal M J Neurophysiol; 2008 Apr; 99(4):1857-70. PubMed ID: 18216220 [TBL] [Abstract][Full Text] [Related]
26. Contrasting Modulatory Effects from the Dorsal and Ventral Premotor Cortex on Primary Motor Cortex Outputs. Côté SL; Hamadjida A; Quessy S; Dancause N J Neurosci; 2017 Jun; 37(24):5960-5973. PubMed ID: 28536271 [TBL] [Abstract][Full Text] [Related]
27. Ipsilateral connections of the ventral premotor cortex in a new world primate. Dancause N; Barbay S; Frost SB; Plautz EJ; Stowe AM; Friel KM; Nudo RJ J Comp Neurol; 2006 Apr; 495(4):374-90. PubMed ID: 16485282 [TBL] [Abstract][Full Text] [Related]
28. Short-duration stimulation of the supplementary eye fields perturbs anti-saccade performance while potentiating contralateral head orienting. Chapman BB; Corneil BD Eur J Neurosci; 2014 Jan; 39(2):295-307. PubMed ID: 24417515 [TBL] [Abstract][Full Text] [Related]
29. Response properties of saccade-related neurons of the post-arcuate premotor cortex. Neromyliotis E; Moschovakis AK J Neurophysiol; 2018 Jun; 119(6):2291-2306. PubMed ID: 29537912 [TBL] [Abstract][Full Text] [Related]
30. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements. Waitzman DM; Silakov VL; Cohen B J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396 [TBL] [Abstract][Full Text] [Related]
31. Involvement of Purkinje cells in evoking saccadic eye movements by microstimulation of the posterior cerebellar vermis of monkeys. Noda H; Fujikado T J Neurophysiol; 1987 May; 57(5):1247-61. PubMed ID: 3585467 [TBL] [Abstract][Full Text] [Related]
32. Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. Thier P; Andersen RA J Neurophysiol; 1998 Oct; 80(4):1713-35. PubMed ID: 9772234 [TBL] [Abstract][Full Text] [Related]
33. Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. Goldberg ME; Bruce CJ J Neurophysiol; 1990 Aug; 64(2):489-508. PubMed ID: 2213128 [TBL] [Abstract][Full Text] [Related]
35. Role of the oculomotor vermis in generating pursuit and saccades: effects of microstimulation. Krauzlis RJ; Miles FA J Neurophysiol; 1998 Oct; 80(4):2046-62. PubMed ID: 9772260 [TBL] [Abstract][Full Text] [Related]
36. Evidence for a supplementary eye field. Schlag J; Schlag-Rey M J Neurophysiol; 1987 Jan; 57(1):179-200. PubMed ID: 3559671 [TBL] [Abstract][Full Text] [Related]
37. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. Bruce CJ; Goldberg ME; Bushnell MC; Stanton GB J Neurophysiol; 1985 Sep; 54(3):714-34. PubMed ID: 4045546 [TBL] [Abstract][Full Text] [Related]
38. Neuronal activity in the ventral part of premotor cortex during target-reach movement is modulated by direction of gaze. Mushiake H; Tanatsugu Y; Tanji J J Neurophysiol; 1997 Jul; 78(1):567-71. PubMed ID: 9242308 [TBL] [Abstract][Full Text] [Related]
39. Laterality of movement-related activity reflects transformation of coordinates in ventral premotor cortex and primary motor cortex of monkeys. Kurata K J Neurophysiol; 2007 Oct; 98(4):2008-21. PubMed ID: 17686916 [TBL] [Abstract][Full Text] [Related]
40. Functional properties of single neurons in the face primary motor cortex of the primate. I. Input and output features of tongue motor cortex. Murray GM; Sessle BJ J Neurophysiol; 1992 Mar; 67(3):747-58. PubMed ID: 1578252 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]