These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 9753112)
1. Increased lesion-induced sprouting of corticospinal fibres in the myelin-free rat spinal cord. Vanek P; Thallmair M; Schwab ME; Kapfhammer JP Eur J Neurosci; 1998 Jan; 10(1):45-56. PubMed ID: 9753112 [TBL] [Abstract][Full Text] [Related]
2. Increased collateral sprouting of primary afferents in the myelin-free spinal cord. Schwegler G; Schwab ME; Kapfhammer JP J Neurosci; 1995 Apr; 15(4):2756-67. PubMed ID: 7536819 [TBL] [Abstract][Full Text] [Related]
3. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Thallmair M; Metz GA; Z'Graggen WJ; Raineteau O; Kartje GL; Schwab ME Nat Neurosci; 1998 Jun; 1(2):124-31. PubMed ID: 10195127 [TBL] [Abstract][Full Text] [Related]
4. Long-lasting sprouting and gene expression changes induced by the monoclonal antibody IN-1 in the adult spinal cord. Bareyre FM; Haudenschild B; Schwab ME J Neurosci; 2002 Aug; 22(16):7097-110. PubMed ID: 12177206 [TBL] [Abstract][Full Text] [Related]
5. Increased expression of the growth-associated protein GAP-43 in the myelin-free rat spinal cord. Kapfhammer JP; Schwab ME Eur J Neurosci; 1994 Mar; 6(3):403-11. PubMed ID: 8019677 [TBL] [Abstract][Full Text] [Related]
6. Channeling of developing rat corticospinal tract axons by myelin-associated neurite growth inhibitors. Schwab ME; Schnell L J Neurosci; 1991 Mar; 11(3):709-21. PubMed ID: 1705967 [TBL] [Abstract][Full Text] [Related]
7. Sprouting and regeneration of lesioned corticospinal tract fibres in the adult rat spinal cord. Schnell L; Schwab ME Eur J Neurosci; 1993 Sep; 5(9):1156-71. PubMed ID: 8281320 [TBL] [Abstract][Full Text] [Related]
8. Structural plasticity of the adult CNS. Negative control by neurite growth inhibitory signals. Schwab ME Int J Dev Neurosci; 1996 Jul; 14(4):379-85. PubMed ID: 8884371 [TBL] [Abstract][Full Text] [Related]
9. Increased corticofugal plasticity after unilateral cortical lesions combined with neutralization of the IN-1 antigen in adult rats. Wenk CA; Thallmair M; Kartje GL; Schwab ME J Comp Neurol; 1999 Jul; 410(1):143-57. PubMed ID: 10397401 [TBL] [Abstract][Full Text] [Related]
10. Reorganization of descending motor tracts in the rat spinal cord. Raineteau O; Fouad K; Bareyre FM; Schwab ME Eur J Neurosci; 2002 Nov; 16(9):1761-71. PubMed ID: 12431229 [TBL] [Abstract][Full Text] [Related]
11. Regeneration and sprouting of chronically injured corticospinal tract fibers in adult rats promoted by NT-3 and the mAb IN-1, which neutralizes myelin-associated neurite growth inhibitors. von Meyenburg J; Brösamle C; Metz GA; Schwab ME Exp Neurol; 1998 Dec; 154(2):583-94. PubMed ID: 9878193 [TBL] [Abstract][Full Text] [Related]
12. Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti-Nogo-A therapy. Lindau NT; Bänninger BJ; Gullo M; Good NA; Bachmann LC; Starkey ML; Schwab ME Brain; 2014 Mar; 137(Pt 3):739-56. PubMed ID: 24355710 [TBL] [Abstract][Full Text] [Related]
13. Specificity of corticospinal axon arbors sprouting into denervated contralateral spinal cord. Kuang RZ; Kalil K J Comp Neurol; 1990 Dec; 302(3):461-72. PubMed ID: 1702111 [TBL] [Abstract][Full Text] [Related]
14. Inverse patterns of myelination and GAP-43 expression in the adult CNS: neurite growth inhibitors as regulators of neuronal plasticity? Kapfhammer JP; Schwab ME J Comp Neurol; 1994 Feb; 340(2):194-206. PubMed ID: 8201019 [TBL] [Abstract][Full Text] [Related]
15. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord. Mahmood A; Wu H; Qu C; Xiong Y; Chopp M J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801 [TBL] [Abstract][Full Text] [Related]
16. Postnatal development of the ipsilateral corticospinal component in rat spinal cord: a light and electron microscopic anterograde HRP study. Joosten EA; Schuitman RL; Vermelis ME; Dederen PJ J Comp Neurol; 1992 Dec; 326(1):133-46. PubMed ID: 1479066 [TBL] [Abstract][Full Text] [Related]
17. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. Brösamle C; Huber AB; Fiedler M; Skerra A; Schwab ME J Neurosci; 2000 Nov; 20(21):8061-8. PubMed ID: 11050127 [TBL] [Abstract][Full Text] [Related]
18. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Schnell L; Schneider R; Kolbeck R; Barde YA; Schwab ME Nature; 1994 Jan; 367(6459):170-3. PubMed ID: 8114912 [TBL] [Abstract][Full Text] [Related]
19. Axon sprouting in the spinal cord: growth promoting and growth inhibitory mechanisms. Kapfhammer JP Anat Embryol (Berl); 1997 Dec; 196(6):417-26. PubMed ID: 9453362 [TBL] [Abstract][Full Text] [Related]
20. Functional recovery and enhanced corticofugal plasticity after unilateral pyramidal tract lesion and blockade of myelin-associated neurite growth inhibitors in adult rats. Z'Graggen WJ; Metz GA; Kartje GL; Thallmair M; Schwab ME J Neurosci; 1998 Jun; 18(12):4744-57. PubMed ID: 9614248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]