These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 9753116)
1. Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Schweighofer N; Arbib MA; Kawato M Eur J Neurosci; 1998 Jan; 10(1):86-94. PubMed ID: 9753116 [TBL] [Abstract][Full Text] [Related]
2. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay. Salimi-Badr A; Ebadzadeh MM; Darlot C Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878 [TBL] [Abstract][Full Text] [Related]
3. Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Schweighofer N; Spoelstra J; Arbib MA; Kawato M Eur J Neurosci; 1998 Jan; 10(1):95-105. PubMed ID: 9753117 [TBL] [Abstract][Full Text] [Related]
4. Comparison of cerebellar and motor cortex activity during reaching: directional tuning and response variability. Fortier PA; Smith AM; Kalaska JF J Neurophysiol; 1993 Apr; 69(4):1136-49. PubMed ID: 8492153 [TBL] [Abstract][Full Text] [Related]
5. Cerebellar learning of accurate predictive control for fast-reaching movements. Spoelstra J; Schweighofer N; Arbib MA Biol Cybern; 2000 Apr; 82(4):321-33. PubMed ID: 10804064 [TBL] [Abstract][Full Text] [Related]
6. From the motor cortex to the movement and back again. Teka WW; Hamade KC; Barnett WH; Kim T; Markin SN; Rybak IA; Molkov YI PLoS One; 2017; 12(6):e0179288. PubMed ID: 28632736 [TBL] [Abstract][Full Text] [Related]
7. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment. Ebadzadeh M; Tondu B; Darlot C Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629 [TBL] [Abstract][Full Text] [Related]
8. Model-based neural decoding of reaching movements: a maximum likelihood approach. Kemere C; Shenoy KV; Meng TH IEEE Trans Biomed Eng; 2004 Jun; 51(6):925-32. PubMed ID: 15188860 [TBL] [Abstract][Full Text] [Related]
9. A neural model of cerebellar learning for arm movement control: cortico-spino-cerebellar dynamics. Contreras-Vidal JL; Grossberg S; Bullock D Learn Mem; 1997; 3(6):475-502. PubMed ID: 10456112 [TBL] [Abstract][Full Text] [Related]
10. Arm trajectory and representation of movement processing in motor cortical activity. Schwartz AB; Moran DW Eur J Neurosci; 2000 Jun; 12(6):1851-6. PubMed ID: 10886326 [TBL] [Abstract][Full Text] [Related]
11. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques. Pigeon P; Bortolami SB; DiZio P; Lackner JR J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179 [TBL] [Abstract][Full Text] [Related]
12. Adjustable primitive pattern generator: a novel cerebellar model for reaching movements. Vahdat S; Maghsoudi A; Haji Hasani M; Towhidkhah F; Gharibzadeh S; Jahed M Neurosci Lett; 2006 Oct; 406(3):232-4. PubMed ID: 16930835 [TBL] [Abstract][Full Text] [Related]
13. A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Grossberg S; Paine RW Neural Netw; 2000; 13(8-9):999-1046. PubMed ID: 11156206 [TBL] [Abstract][Full Text] [Related]
14. Concepts of motor organization. Miles FA; Evarts EV Annu Rev Psychol; 1979; 30():327-62. PubMed ID: 375812 [No Abstract] [Full Text] [Related]
15. Comparing cerebellar and motor cortical activity in reaching and grasping. Smith AM; Dugas C; Fortier P; Kalaska J; Picard N Can J Neurol Sci; 1993 May; 20 Suppl 3():S53-61. PubMed ID: 8334592 [TBL] [Abstract][Full Text] [Related]
16. The timing of control signals underlying fast point-to-point arm movements. Ghafouri M; Feldman AG Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386 [TBL] [Abstract][Full Text] [Related]
17. Cerebellum predicts the future motor state. Ebner TJ; Pasalar S Cerebellum; 2008; 7(4):583-8. PubMed ID: 18850258 [TBL] [Abstract][Full Text] [Related]
18. Computation of inverse dynamics for the control of movements. Darlot C; Zupan L; Etard O; Denise P; Maruani A Biol Cybern; 1996 Aug; 75(2):173-86. PubMed ID: 8855355 [TBL] [Abstract][Full Text] [Related]
19. Fast ballistic arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. II. Effects of unilateral dentate lesion on discharge of precentral cortical neurons and reaction time. Spidalieri G; Busby L; Lamarre Y J Neurophysiol; 1983 Dec; 50(6):1359-79. PubMed ID: 6663332 [TBL] [Abstract][Full Text] [Related]
20. From intention to action: motor cortex and the control of reaching movements. Kalaska JF Adv Exp Med Biol; 2009; 629():139-78. PubMed ID: 19227499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]